
Quantum Mechanics — Lecture notes for PHYS223

Henning Schomerus, Lancaster University

These lecture notes lay out the mathematical and interpretational framework of
quantum mechanics and describe how this theory can be utilised to describe com-
mon physical systems and phenomena. Starting from the Schrödinger equation, we
study a number of exactly solvable problems, including one-dimensional potentials,
angular momentum quantization, spin, and the hydrogen atom, and also provide
systematic approximations for not exactly solvable problems. The physical content
of the mathematical solutions is discussed in terms of probabilities and expecta-
tion values. The latter parts of the notes concern temporal dynamics and systems
composed of more than one particle.
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I. WAVES ARE PARTICLES, PARTICLES ARE WAVES

We start by revisiting two experiments which
contravene the laws of classical physics. The ob-
servations match with phenomenological explana-
tions that relate particles and waves. Quantum
mechanics extends this phenomenology into a con-
sistent general framework.

A. Compton scattering: waves are particles

Compton scattering occurs when X-rays [an
electromagnetic (EM) wave of a very small wave
length λ] hit an electron at rest (e.g., an electron
bound in a solid). In the scattering event the wave
is deflected and the electron is accelerated to a
large velocity v, i.e., it acquires a large final mo-
mentum pe. (We use boldface letters to denote
vectors in three-dimensional space.) One observes
that the wave changes its wave length to λ′ > λ,
and that this change depends on the deflection an-
gle φ (i.e., the position of the detector which col-
lects the scattered wave).

Classical electromagnetism does not permit
such a change of wave length. In this theory, a
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plane wave with fixed propagation direction n has
space and time dependence

exp(ik · r− iωt), (1.1)

where ω = 2πf is the angular frequency (with f the
usual frequency), while k = kn is the wave vector,
which points into the propagation direction and
has length |k| = k = 2π/λ. The scalar k is called
the wave number, and is strictly related to the an-
gular frequency via the relation ω/k = c, where c
is the speed of light. Upon scattering off a static
object, the frequency of the wave does not change,
and so its wave length cannot change as well.

However, a phenomenological explanation of the
observations can be given when one assumes that
the X-rays are composed of particles, called pho-
tons, which carry specific amounts (quanta) of en-
ergy

E = ~ω (1.2)

and momentum

p = ~k, (1.3)

where

~ = 1.054 571 726 (47)× 10−34Js (1.4)

is the reduced Planck’s constant (Planck’s constant
itself is defined as h = 2π~). Equation (1.2) is
known as the Planck relation, while Eq. (1.3) is
known as the de Broglie relation.

These photons move at a velocity given by the
speed of light c = λf = ω/k. According to the
kinematic relations of special relativity, they hence
carry no mass and obey E = cp. The electron has a
finite mass m and rest energy Ee = mc2 before the
collision, which changes to E′e =

√
m2c4 + p2

ec
2 after

the collision. From the conservation laws for en-
ergy ~ω+Ee = ~ω′+E′e and momentum ~k = ~k′+pe
it follows1 that

λ′ − λ =
2π~
mc

(1− cosφ). (1.5)

This indeed recovers the experimentally observed
change of the wave length.

Points to remember

• De-Broglie relation p = ~k

• Planck relation E = ~ω

1 using ω = kc, k = 2π/λ, and ~kc+ Ee = ~k′c+ E′
e ⇒

[~(k − k′) +mc]2 = m2c2 + ~2(k2 + k′2 − 2kk′ cosφ)︸ ︷︷ ︸
p2e, since ~k=~k′+pe

B. The double-slit experiment with electrons:
particles are waves

When small particles (electrons, α-particles, or
even C60 ‘bucky balls’) are sent through small
slits, they randomly change direction in violation
to classical mechanics. Over many experimental
runs, one can identify a probability P (r) dr that a
particle arrives in a some small region dr around
a point r, and this probability looks similar to the
intensity distribution of a diffracted wave.

This can be explained by de Broglie’s phe-
nomenological concept of ‘matter waves’

Ψ(r; t) = A exp(ik · r− iωt), (1.6)

where the wave properties are related to the known
kinetic properties of the particle in exactly the
same manner as for the photons — the angu-
lar frequency is ω = E/~ and the wave vector is
k = p/~. The experimentally determined proba-
bility P (r) is then found to be proportional to the
intensity |Ψ(r; t)|2 of the matter wave. We call Ψ(r; t)
the wave function.

Points to remember

• All information about the state of a quantum
mechanical system is encoded in a wave func-
tion, which in the examples above is of the
form Ψ(r; t).

• The nature of this information is probabilis-
tic. E.g., the probability density of a particle
at position r is given by P (r) = |Ψ(r; t)|2.

II. THE SCHRÖDINGER EQUATION

We now introduce the central equation of quan-
tum mechanics, the Schrödinger equation, which
can be seen as a generalisation of the phenomeno-
logical explanations described above to situations
where particles experience arbitrary forces. We
also introduce the concept of operators related to
observables (measurable properties such as mo-
mentum and energy).

A. Wave equation for photons

For simplicity consider a particle moving in one
dimension, with position measured by a coordi-
nate x. A freely propagating wave with wave num-
ber k and angular frequency ω is described by

Ψk(x; t) = A exp(ikx− iωt). (2.1)
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For light (photons), ω = kc, and we know that
Ψk(x; t) solves the wave equation

∂2Ψ(x; t)

∂t2
= c2

∂2Ψ(x; t)

∂x2
. (2.2)

Indeed, if we insert Ψ(x; t) = Ψk(x; t) into this equa-
tion it reduces to

−ω2Ψk(x; t) = −c2k2Ψk(x; t). (2.3)

Let us multiply the left-hand side of Eq. (2.3)
with (i~)2 = −~2, and the right-hand side with
(−i~)2 = −~2. With the help of the Planck and
de Broglie relations, we then find (check that both
forms are indeed identical!)

E2Ψk(x; t) = c2p2Ψk(x; t). (2.4)

For arbitrary Ψ(x; t), we now repeat this manipula-
tion for the wave equation (2.2) itself:(

i~
∂

∂t

)2

Ψ(x; t) = c2
(
−i~ ∂

∂x

)2

Ψ(x; t). (2.5)

This reformulation turns out to be very conve-
nient. Notice that the operations

i~
∂

∂t
Ψk(x; t) = EΨk(x; t), (2.6)

−i~ ∂

∂x
Ψk(x; t) = pΨk(x; t), (2.7)

allow us to directly read off the energy and mo-
mentum of the photons with wavefunction (2.1). If
Ψ(x; t) is not of the specific form Ψk(x; t), the result
of these operations is not just a multiplication with
a number (E or p). However, if we define

i~
∂

∂t
Ψ(x; t) ≡ ÊΨ(x; t), (2.8)

−i~ ∂

∂x
Ψ(x; t) ≡ p̂Ψ(x; t), (2.9)

the result always fulfils the wave equation

Ê2Ψ(x; t) = c2p̂2Ψ(x; t). (2.10)

Notice the similarity to Eq. (2.4). We call Ê the
energy operator and p̂ the momentum operator.
The mathematical properties of these operators are
explored later on in this course.

Points to remember

• Physical observables are associated with op-
erators.

• Momentum operator p̂x = −i~ ∂
∂x , p̂y = −i~ ∂

∂y ,
p̂z = −i~ ∂

∂z ;

• Energy operator Ê = i~ ∂
∂t .

• Position operator x̂ = x, ŷ = y, ẑ = z.

• E.g.:
p̂xx̂f(x) = −i~ d

dx (xf(x))

x̂p̂xf(x) = −xi~ d
dx (f(x)).

B. The Schrödinger equation

For light, we have Ê2Ψ(x; t) = c2p̂2Ψ(x; t) in corre-
spondence to the relation E2 = c2p2 for energy and
momentum of the photons. This correspondence
shall guide as a heuristic principle from classical
mechanics to quantum mechanics.

For particles with finite mass (at non-relativistic
speed), the total energy is given by E = p2/2m +
V (x), where T = p2/2m = mv2/2 is the kinetic en-
ergy and V (x) is the potential energy (recall that
the force acting on the particle is F (x) = −dV/dx).

Reading the correspondence principle given above
backwards, one finds the Schrödinger equation

ÊΨ(x; t) =
p̂2

2m
Ψ(x; t) + V̂Ψ(x; t). (2.11)

Let us decode this equation and express it in usual
mathematical notation:

i~
∂Ψ(x; t)

∂t
= − ~2

2m

∂2Ψ(x; t)

∂x2
+ V (x)Ψ(x; t). (2.12)

In the steps above we associate to the potential
energy an operator V̂ , which changes Ψ(x; t) into

V̂Ψ(x; t) ≡ V (x)Ψ(x; t). (2.13)

It is only consequent to also introduce the position
operator

x̂Ψ(x; t) ≡ xΨ(x; t) (2.14)

and the operator of kinetic energy T̂ ≡ p̂2/2m. The
combination

Ĥ ≡ T̂ + V̂ = p̂2/2m+ V̂ (2.15)

is called the Hamilton operator (or Hamiltonian),
which is of central importance in quantum me-
chanics. It corresponds to the total energy in clas-
sical mechanics.

We now can restate the Schrödinger equation in
the compact form

i~
∂

∂t
Ψ(x; t) = ĤΨ(x; t). (2.16)

Even more compactly we can write

ÊΨ = ĤΨ, (2.17)

where we suppressed the arguments.

Points to remember
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• The evolution of the wave function (=state of
the system) for a quantum particle of mass
m moving in one dimension is determined by
the Schrödinger equation

i~
∂Ψ(x; t)

∂t
= − ~2

2m

∂2Ψ(x; t)

∂x2
+ V (x)Ψ(x; t), (2.18)

or

ÊΨ(x; t) = ĤΨ(x; t), (2.19)

where Ĥ = p̂2/2m+ V̂ (x) is the Hamiltonian.

C. Stationary Schrödinger equation

If Ĥ does not explicitly depend on time [a counter
example would be a driven particle sitting in a
modulated potential V (x; t)], energy is classically
conserved. In quantum mechanics, this results in
a simplification of the Schrödinger equation, since
we can separate out the time variable t. Let us
write

ΨE(x; t) = exp(−iEt/~)ψ(x), (2.20)

where the time dependence ∝ exp(−iEt/~) =
exp(−iωt) is the same as for a propagating plane
wave, but the spatial dependence has not been
specified yet. With the energy operator defined in
Eq. (2.8), we then have ÊΨE(x; t) = EΨE(x; t) [see
Eq. (2.6)]. It now remains to find an equation for
the spatial dependence ψ(x). We insert ΨE(x; t) into
the time-dependent Schrödinger equation (2.16)
and obtain

Eψ(x) exp(−iEt/~) = Ĥψ(x) exp(−iEt/~). (2.21)

Divide by the time-dependent factor exp(−iEt/~),
and we end up with the stationary Schrödinger
equation

Eψ(x) = Ĥψ(x), (2.22)

where E is now just a real number. This equa-
tion is independent of time. For a particle of mass
m moving in a one-dimensional potential V (x), its
explicit form is

Eψ(x) = − ~2

2m

d2ψ

dx2
+ V (x)ψ(x). (2.23)

This is the most important equation in this module,
and we will study it for a wide range of problems.
Hence, remember it well!

Points to remember

• For a particle of mass m moving in one dimen-
sion, the states with fixed energy E are deter-
mined by the stationary Schrödinger equation

Eψ(x) = − ~2

2m

d2ψ

dx2
+ V (x)ψ(x). (2.24)

III. MATHEMATICAL INTERPRETATION OF THE
SCHRÖDINGER EQUATION

A. The Schrödinger equation as a differential equation

We can write the stationary Schrödinger equa-
tion (2.23) as

Eψ(x) = − ~2

2m
ψ′′(x) + V (x)ψ(x), (3.1)

where ψ′′(x) denotes the second derivative of the
wave function. Equation (3.1) is a homogeneous
linear ordinary differential equation of second or-
der. The solutions ψ(x) have the following proper-
ties:

Mathematical property I: superposition prin-
ciple: If ψ1(x) and ψ2(x) are solutions of Eq. (3.1)
and A, B are constants, then

ψ(x) = Aψ1(x) +Bψ2(x) (3.2)

is also a solution of Eq. (3.1). This is a conse-
quence of the linearity of Eq. (3.1).

Mathematical property II: continuity condi-
tions: Any solution ψ(x) is a continuous function
(the function is smooth, i.e., has no jumps). The
first derivative ψ′(x) is also continuous, with the
possible exception of points where |V (x)| = ∞. At
such points, ψ′(x) may jump, which translates into
a ‘kink’ in ψ(x) [i.e., ψ(x) is still continuous, but
suddenly changes its slope].

Mathematical property III: boundary condi-
tions: The wave function must be bounded for
|x| → ∞ (i.e., it is not allowed to increase indefi-
nitely). This condition has a physical origin, since
if it were violated we could not interpret |ψ(x)|2 as
the position probability density (the particle would
be sitting at ±∞).

B. The Schrödinger equation as an eigenvalue problem

In general, ψ(x) is a function, and Ĥψ(x) is just
another function, which usually is of a very dif-
ferent form than ψ(x). In solving the station-
ary Schrödinger equation, we find functions ψn(x)
such that Ĥψn = Enψn. Thus, for a solution ψn
of the stationary Schrödinger equation the opera-
tion with Ĥ is equivalent to the multiplication by
a real number En. Functions ψn(x) with this prop-
erty are called eigenfunctions of Ĥ, and the num-
bers En are known as eigenvalues. Informed by
the physical meaning of these mathematical ob-
jects, the eigenfunctions of the Hamiltonian are
also called eigenstates, and since the Hamilto-
nian represents energy its eigenvalues are called
eigenenergies.
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C. Momentum eigenfunctions

Eigenfunctions and eigenvalues can also be de-
fined for other operators Â, by requiring Âψ = aψ.
In particular, the eigenfunctions of the momentum
operator p̂ = −i~d/dx are

ψp(x) =
1√
2π~

exp(ipx/~), (3.3)

and thus are given by the position-dependent part
of the plane waves Ψk [see Eq. (2.7); the stated form
expresses k by the eigenvalue p, and the stated am-
plitude ensures the appropriate normalisation of
the probability distribution of momentum, intro-
duced in Section VII.A].

D. Position eigenfunctions and the Dirac delta-function

The eigenfunctions of x̂ must be very localised
in space, at some place x0, and zero at all other
places, so that x̂ψx0

(x) = xψx0
(x) = x0ψx0

(x).
These highly singular functions can be expressed
in terms of Dirac’s δ-function,

ψx0(x) = δ(x− x0). (3.4)

The δ-function is so singular that it actually does
not constitute a proper function, but a so-called
distribution. Its defining property is the following
integral: ∫ ∞

−∞
dxf(x)δ(x− x0) = f(x0) (3.5)

for any function f(x) that is continuous at x0. The
δ-function is real and symmetric, δ∗(x− x′) = δ(x−
x′) = δ(x′ − x).

Points to remember

• The stationary Schrödinger equation is a lin-
ear differential equation, and the ensuing
superposition principle, continuity require-
ments and boundary conditions determine
important features of its solutions.

• The stationary Schrödinger equation can also
be interpreted as an eigenvalue equation of
the Hamiltonian, Ĥψ = Eψ.

• The eigenfunctions of the momentum opera-
tor are given by ψp(x) = 1√

2π~ exp(ipx/~).

IV. A FIRST EXAMPLE: PARTICLE IN THE SQUARE WELL

A. The particle in the one-dimensional square well

The Schrödinger equation involves the potential
energy V (x), which depends on the physical cir-

cumstances and may be arbitrarily complicated. A
simple situation is a particle that bounces between
two hard walls at x = −L/2 and x = L/2. This prob-
lem is called the particle in the box, or the parti-
cle in the square well, and is one of the few cases
where the stationary Schrödinger equation can be
solved explicitly.

Classically, at a given energy E the particle
bounces between the walls with velocity v =√

2E/m when the particle moves to the right and
v = −

√
2E/m when it moves to the left. The corre-

sponding potential energy is given by

V (x) = 0 for − L

2
< x <

L

2
,

V (x) =∞ elsewhere (in the walls). (4.1)

You may wish to draw the potential on a piece of
paper.

Because the walls are infinitely high, we don’t
expect to find the particle there at any time. This
indeed follows from the stationary Schrödinger
equation. In the walls, we have Eψ(x) = (p̂2/2m +
∞)ψ(x) =∞× ψ(x), which (for finite energy E) only
can be fulfilled for

ψ(x) = 0 for x < −L
2

or x >
L

2
. (4.2)

Between the walls, the stationary Schrödinger
equation has the simple form

Eψ(x) = − ~2

2m

d2ψ

dx2
for − L

2
< x <

L

2
. (4.3)

Even though in this notation it may look unfamil-
iar, this is just the wave equation for a vibrating
string clamped between the walls (think of a gui-
tar string, and see Young & Freedman chpt. 15.8.)
The solutions are of the form

ψ(x) = a cos kx+ b sin kx, where k =
√

2mE/~.
(4.4)

This is a periodic function of x, with period (wave
length) λ = 2π/k. However, not all values of k are
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allowed, since the wave function must match con-
tinuously (smoothly) with the solution ψ = 0 in the
walls—the wavefunction cannot jump because this
would correspond to an infinitely large kinetic en-
ergy (the kinetic energy is proportional to the sec-
ond derivative of the wave function, see section
II.B). This translates into the boundary conditions

ψ(−L/2) = 0, ψ(L/2) = 0. (4.5)

They can only be fulfilled simultaneously if the dis-
tance λ/2 = π/k between the zeros of the oscillatory
function Eq. (4.4) is a multiple of L, so that we can
start with a zero at x = −L/2 and end up with an-
other zero at x = L/2. The allowed values for k
hence are restricted to the discrete values

kn =
nπ

L
, n an integer. (4.6)

We say that k is quantised. Since k =
√

2mE/~,
this translates directly into a quantisation of the
energy,

En =
k2
n~2

2m
=

π2~2

2mL2
n2. (4.7)

The quantised energy values are also called energy
levels.

Note that these values depend on the assumed
form of the potential energy V (x); changing the
potential results in a different Schrödinger equa-
tion, which has different solutions and leads to
other energies. We will get acquainted with this
by studying several more examples, including the
hydrogen atom. In general, the level with the low-
est energy characterises the ground state of the
system. In difference to classical mechanics, the
ground-state energy is not equal to the minimal
potential energy Vmin, corresponding to the classi-
cal particle at rest. (For the square well, Vmin = 0.)
The difference E1 − Vmin is called zero-point en-
ergy, and we will later see that it can be explained
by Heisenberg’s uncertainty relation.

Based on the boundary conditions, you can con-
firm that the wave functions associated with the
energy levels are

ψn = an cos knx for n odd, (4.8)

ψn = bn sin knx for n even. (4.9)

We restrict n to be positive, since negative values
do not deliver independent solutions.

You find diagrams of the energy levels and the
associated wave functions of the particle in the
square well in almost every book on quantum me-
chanics (e.g., Young and Freedman, Fig. 40.4; A
Rae, Fig 2.1). You could sketch them by yourself!

Points to remember

• For a particle in an infinite square well of
width L, the stationary Schrödinger equation
in the region between the walls is given by

Eψ = − ~2

2m

d2ψ(x)

dx2
. (4.10)

This is solved by ψ = a cos kx+b sin kx provided
E = ~2k2/2m.

• At the infinitely high walls, the wave function
has to vanish (ψ(x = wall) = 0). This selects
kn = nπ/L, where n is an integer.

• The associated energies are En = π2~2

2mL2n
2.

B. Discussion: The probability interpretation of the wave
function

Based on the specific solutions for the particle
in the square well, we now can work to get a bet-
ter feeling about the physical content of the wave
function. What we already have agreed upon is to
interpret

P (x) = |ψ(x)|2 (4.11)

as the probability density in a position measure-
ment. We say density, because in order to get an
actual probability to find the particle in some in-
terval x1 < x < x2 we still have to do an integral

P (x1 < x < x2) =

∫ x2

x1

dxP (x) =

∫ x2

x1

dx |ψ(x)|2.

(4.12)
If we do a position measurement, we would find the
particle randomly located at various places, but
after many experiments we would find the prob-
ability density as given in Eq. (4.11). We say the
particle is delocalised in space. [Next to the wave
functions for the first few levels of the particle in
the square well, you may wish to sketch the corre-
sponding probability densities P (x).]
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Since we will find the particle somewhere, we
have to require

P (−∞ < x <∞) =

∫ ∞
−∞

dxP (x) = 1 (4.13)

⇒
∫ ∞
−∞

dx |ψ(x)|2 = 1. (4.14)

This is called the normalisation condition for the
wave function, and must be obeyed for any wave
function ψ(x) representing the state of a quantum-
mechanical particle in a one-dimensional poten-
tial.

For the square well, the normalisation condition
delivers suitable values of the constants an, bn in
Eqs. (4.8,4.9). For n odd, the normalisation inte-
gral is given by∫ L/2

−L/2
dx|an|2 cos2 πnx

L
= |an|2

L

2
. (4.15)

The normalisation condition hence is fulfilled for
an =

√
2/L (this is the most convenient choice),

and the normalised wave function in −L/2 < x <
L/2 is

ψn(x) =

√
2

L
cos

πnx

L
for n odd, (4.16)

ψn(x) = for n even. (4.17)

(Exercise: fill in the result for n even.)

Points to remember

• (recall) The probability density to find a parti-
cle at position x is P (x) = |ψ(x)|2.

• The probability to find the particle between
two positions x1 and x2 is given by

P (x1 < x < x2) =

∫ x2

x1

dx |ψ(x)|2. (4.18)

• The probability density has to be normalised:∫∞
−∞ P (x)dx = 1, hence

∫∞
−∞ |ψ(x)|2 dx = 1. This

is also called the normalisation condition of
the wave function.

C. Momentum and energy

What if instead of position we measure some
other observable quantity of the particle in the
square well, say its momentum or its energy?

Let’s start with momentum. Recall that classi-
cally the particle bounces between the walls with
constant velocity. This translates to the values for
momentum p =

√
2mE when the particle moves

right and p = −
√

2mE when the particle moves left.
Also recall that in the case of the freely moving par-
ticle with the wave function Ψk given in Eq. (2.1),
we could read off the momentum from Eq. (2.7),
p̂Ψk = pΨk.

For the particle in the box, we cannot read off
the momentum in this way since the wave function
p̂ψn is not proportional to ψn. E.g., for n odd

−i~ d

dx
cos knx = i~kn sin knx. (4.19)

Indeed note that

cos knx =
1

2
[exp(iknx) + exp(−iknx)] (4.20)

is a superposition (sum) of wave functions that
describe the particle moving right and left at the
same time. So, the particle must be said to be de-
localised in momentum. (Later we describe how
to determine the probability that the particle has a
given momentum p.)

On the other hand, the energy En of the states
ψn fulfilling Ĥψn = Enψn is well defined. In real-
ity, subsequent energy measurements on particles
prepared in a state ψn all would yield the same
value En, so that for such a state there is no un-
certainty attached to energy.

Points to remember

• Values of observables are not certain. A
quantum particle can have finite probabilities
to be at different places, and move into differ-
ent directions, all at the same time. A classi-
cal particle is certainly not capable of showing
such a weird behavior.

V. FURTHER EXAMPLES: BOUND STATES, EXTENDED STATES,
AND TUNNELING

A. Constant potential

Consider that the particle moves in a constant
potential V (x) = VI . It may be a good idea to sketch
the potential on a piece of paper.

Classically, the total energy of the particle would
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be given by E = p2/2m + VI . Part of the total en-
ergy is taken up by the potential energy VI . The
remaining kinetic energy is p2/2m = (E − VI). We
can solve for p and find that the classical particle
has momentum

p = ±
√

2m(E − VI). (5.1)

Classically, no energies E < VI are allowed, since
the momentum has to be real.

Quantum-mechanically, the particle is described
by a wave function ψ(x) which solves the Schrö-
dinger equation

Eψ(x) = − ~2

2m
ψ′′(x) + VIψ(x). (5.2)

It is useful to rearrange this equation by subtract-
ing on both sides VIψ(x). Then we obtain

(E − VI)ψ(x) = − ~2

2m
ψ′′(x). (5.3)

This is a homogenous linear ordinary differential
equation of second order with constant coefficients.
Its general solution is of the form

ψ(x) = A exp(ikx) +B exp(−ikx), (5.4)

where A and B are arbitrary complex numbers.
The wave number k is also a constant, and is found
by inserting ψ(x) into the Schrödinger equation:

(E − VI)[A exp(ikx) +B exp(−ikx)]

=
~2k2

2m
[A exp(ikx) +B exp(−ikx)]. (5.5)

This gives the condition (E − VI) = ~2k2

2m , which is
satisfied for

k =

√
2m(E − VI)

~
. (5.6)

Note that this is of the form k = |p|/~, where p is
the classical momentum (5.1). (This is just the de
Broglie relation for momentum.) A second solution
is k = −|p|/~, but we have already taken care of
it by the second exponential in (5.4). For E > VI
(the classically allowed case), k is positive, and the
solution ψ(x) is the superposition of a plane wave
that moves to the right (amplitude A) and a plane
wave that moves to the left (amplitude B). If we
would make an experiment that measures the di-
rection of the particle, we would find the probabil-
ities for motion into each direction as

P (particle moves right) =
|A|2

|A|2 + |B|2
, (5.7)

P (particle moves left) =
|B|2

|A|2 + |B|2
. (5.8)

(We could normalise the wave function to |A|2 +
|B|2 = 1 to obtain simpler expressions, but here it
is useful to keep the discussion more general.)

We can also find solutions for E < VI . The wave
number k is then imaginary,

k =

√
2m(E − VI)

~
= i

√
2m(VI − E)

~
≡ iκ, (5.9)

where we introduced the real number κ =√
2m(VI−E)

~ . The wave function is then of the form

ψ(x) = A exp(−κx) +B exp(κx). (5.10)

The first term increases rapidly for x → −∞, and
the second term increases rapidly for x → ∞. Ac-
cording to the mathematical property III listed in
Sec. III.A, we have to discard these solutions. Our
only choice is to set A = B = 0. Hence, just as in
the classical case, the particle cannot have energy
E < VI .

Points to remember

• Probabilities of momentum can be read off by
decomposing the wave function into a super-
position of plane waves.

• The energy of a quantum particle is bounded
from below by the minimum of the potential
energy of a system.

B. Constant potential, terminated by a hard wall

A hard wall is a region in space where V (x) =∞.
Let us consider the potential

V (x) =

{
VI for x < 0
∞ for x > 0

, (5.11)

which is constant for x < 0 and represents a hard
wall for x > 0.

For simplicity, let us assume that VI = 0.
Classically, the particle moves with momentum

p =
√

2mE to the right, bounces from the hard
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wall at x = 0, and then moves with momentum
p = −

√
2mE to the left.

For x > 0, the Schrödinger equation is of the
form Eψ(x) = ∞ψ(x), which only can be fulfilled
for ψ(x) = 0. Hence, just as in the classical case,
the particle is never found in the hard wall.

For x < 0, the Schrödinger equation is just of the
same form as in the previous section, Eq. (5.3),
with VI = 0. The general solution is again of the
form Eq. (5.4), but now we have to take care of
the mathematical property II listed in Sec. III.A: the
wave function has to be continuous at x = 0. Since
in the wall ψ(x) = 0, we have to require that

ψ(0) = A+B = 0. (5.12)

Hence, B = −A, and the wave function becomes

ψ(x) = A exp(ikx)−A exp(−ikx) = 2Ai sin kx for x < 0.
(5.13)

Compared to the previous section, we hence have
‘lost’ one free coefficient in the wave function.
This is the consequence of the boundary condition
ψ(x) = 0 at the hard wall. Since |B|2 = |A|2, the
probability to find the particle moving to the right
is equal to the probability to find the particle mov-
ing to the left.

C. Constant potential, terminated by a soft wall

A soft wall is a region in space where V (x) = VII
is constant and larger than the potential in the
bordering regions. Let us consider the potential

V (x) =

{
0 for x < 0

VII > 0 for x > 0
, (5.14)

which represents a soft wall in the region x > 0.

Classically, a soft wall serves the same purpose
(namely, being a wall) as a hard wall as long as
the total energy E < VII . Just as in case of
the hard wall, the particle moves with momen-
tum p =

√
2mE to the right, bounces from the soft

wall at x = 0, and then moves with momentum
p = −

√
2mE to the left.

We call x < 0 the ‘region I’ and x > 0 the ‘region
II’, and denote the wave function in each region by
ψI and ψII , respectively.

In region II (x > 0), the Schrödinger equation is
given by

EψII(x) = −(~2/2m)ψ′′II(x) + VIIψII(x), (5.15)

which is of the same form as Eq. (5.3) but with VI
replaced by VII . Since we assume E < VII , the
solutions are of the form given in Eq. (5.10),

ψII(x) = AII exp(−κIIx) +BII exp(κIIx), (5.16)

where κII = 1
~
√

2m(VII − E). When we first en-
countered this solution, we ruled it out completely,
since it was increasing over all bounds for x→ ±∞.
Now, however, we are only concerned with the be-
haviour for x > 0. Hence, we only can conclude
that BII = 0, since the other part of the solution
(with coefficient) decays rapidly to 0 for x → ∞.
Thus, we have

ψII(x) = AII exp(−κx) for x > 0. (5.17)

For x < 0, the Schrödinger equation is also of the
form of Eq. (5.3), but with VI = 0. The general
solution is given in Eq. (5.4), so that

ψI(x) = AI exp(ikIx)+BI exp(−ikIx), kI =
1

~
√

2mE.

(5.18)
Now we have to join the two regions I and II to-

gether. This procedure is called wave matching,
and again is based on the continuity requirements
(mathematical property II above). First of all, the
wave function has to be continuous at x = 0. This
gives

ψI(0) = ψII(0), (5.19)

AI +BI = AII . (5.20)

Moreover, since the potential is finite, the first
derivative of the wave function has to be contin-
uous as well:

ψ′I(0) = ψ′II(0), (5.21)

ik(AI −BI) = −κAII . (5.22)

We have two conditions (5.20), (5.22), for three co-
efficients AI , BI , and AII . So, we may choose AI
as a given parameter and express the BI and AII
in terms of it. This results in

ik(AI −BI) = −κ(AI +BI)⇒ BI =
ik + κ

ik − κ
AI (5.23)
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and

AII = AI +BI ⇒ AII =
2ik

ik − κ
AI . (5.24)

Just as in the previous section, we only have one
free coefficient in the wave function, AI . In region
I, the particle is described by the wave function ψI .
Since |BI |2 = |AI |2 (please check!), the probability
to find the particle moving to the right is still equal
to the probability to find the particle moving to the
left. In region II, the particle is described by the
wave function ψII .

From our solution we find that AII is finite,
hence, ψII(x) does not vanish in the classically
forbidden region II. This physical phenomenon is
known as tunnelling into classically forbidden
regions. A quantum particle can be found in re-
gions of space which are energetically forbidden for
a classical particle. One also says that the particle
tunnels into the classically forbidden region.

D. Tunnelling through a potential barrier

In order to illustrate the dramatic consequences
of tunnelling, consider the potential

V (x) =

 0 for x < 0 (region I)
V0 > 0 for 0 < x < L (region II)

0 for x > L (region III)
,

(5.25)
which represents a potential barrier of height V
and length L. For E < V0, a classical particle arriv-
ing from the left (region I) would be reflected at the
soft wall at x = 0 and could never enter region III.

In order to find the quantum-mechanical solu-
tion of this problem, first observe that the poten-
tial is constant in each of the three regions, so that
we can readily write down the separate solutions of
the Schrödinger equation,

ψI(x) = AIe
ikx +BIe

−ikx (5.26)

ψII(x) = AIIe
−κx +BIIe

κx (5.27)

ψIII(x) = AIIIe
ikx +BIIIe

−ikx, (5.28)

where k = 1
~
√

2mE and κ = 1
~
√

2m(V0 − E).
The amplitudes AI and BIII describe incoming

particles from the left and right, respectively. The
amplitudes BI and AIII describe outgoing parti-
cles. As mentioned above, we assume that the par-
ticle initially arrives from the left, described by the
amplitude AI , but does not arrive from the right.
This requires us to set BIII = 0. The amplitude
BI describes the case that the particle is reflected
from the barrier, while AIII describes the case that
the particle is transmitted. The probabilities R of

reflection and T of transmission are given by

R =
|BI |2

|AI |2
, T =

|AIII |2

|AI |2
. (5.29)

In order to calculate these probabilities, we again
use continuity (the mathematical property II) and
find four conditions for the five coefficients (setting
BIII = 0 as just discussed):

ψI(0) = ψII(0)⇒ AI +BI = AII +BII

ψ′I(0) = ψ′II(0)⇒ ik(AI −BI) = −κ(AII −BII)
ψII(L) = ψIII(L)⇒ AIIe

−κL +BIIe
κL = AIIIe

ikL

ψ′II(L) = ψ′III(L)

⇒ −κ(AIIe
−κL −BIIeκL) = ikAIIIe

ikL. (5.30)

This linear system of equations can be solved (e.g.
by Gaussian elimination) in order to express all co-
efficients by the amplitude AI of the incoming par-
ticle. In particular, one finds the slightly unwieldy
expression

AIII = AI
4ikκ exp(−ikL)

(κ+ ik)2 exp(−κL)− (κ− ik)2 exp(κL)
.

(5.31)
The transmission probability can be written as

T =
|AIII |2

|AI |2
(5.32)

=
4k2κ2

4k2κ2 + (k2 + κ2) sinh2(κL)
(5.33)

=
4E(V0 − E)

4E(V0 − E) + V 2
0 sinh2(κL)

. (5.34)

Here sinh(x) = 1
2 (ex − e−x) is the hyperbolic sine

function. Since T > 0 we have to conclude that
there is a finite probability that the particle tunnels
through the wall.

For along barrier with κL � 1, we can use that
sinhx ∼ ex/2� 1 for x→∞, and simplify

T =
16E(V0 − E)

V 2
0

e−2κL. (5.35)

Hence, the tunnel probability becomes very small
for long (macroscopic) barriers. The probability is
also very small for a very high wall (V0 � E).

This physical phenomenon is known as tun-
nelling through a classically forbidden region.
A quantum particle can penetrate walls, especially
if they are short and energetically not too high.

For the problems discussed so far in this chap-
ter, the particle can always escape to x = −∞,
and in some cases also to x = +∞. Solutions of
this type are called extended states. They cannot
be normalised (the integral

∫∞
−∞ |ψ(x)|2dx diverges),

but still permit a probabilistic interpretation for
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the momentum (propagation direction) of the parti-
cle. The energy of extended states can be changed
continuously. This is contrast to the energy of a
particle in a square well, which we discussed in
the preceding chapter and briefly revisit in the fol-
lowing section.

E. Two hard walls

This is identical to the particle in the square well
(see section IV). There, we encountered a type
of solution which is generally known as bound
states. This describes a quantum particle which
is confined in a potential well (so that it cannot
escape to x = ±∞). The associated states are nor-
malisable. Importantly, bound-state solutions of
the Schrödinger equation can only be found for
discrete (quantised) values of energy.

As mentioned before, the lowest bound state is
called the ground state. Classically, the energy is
minimised when the particle rests in the minimum
of the potential. The quantum-mechanical ground-
state energy, however, is elevated above this clas-
sical minimum by the zero-point energy. For the
particle in the square well, the zero point energy is
E1 = π2~2

2mL2 . Later we will see that this is due to the
fact that a quantum particle can never be at rest
at a fixed position, a restriction which is captured
by Heisenberg’s uncertainty principle.

F. General classification of states

The distinction of bound states and extended
states can be carried over to general one-
dimensional potentials with arbitrary position de-
pendence. Generally, one finds:

• bound states at energies where the particle
cannot escape to infinity. Only discrete val-
ues of the energy are allowed. The wavefunc-
tion can be normalised.

• extended states at energies where the parti-
cle can escape to infinity (including escape by
tunneling). A continuous range of energies is
allowed.

VI. THE HARMONIC OSCILLATOR

In quantum mechanics, the harmonic oscillator
is an important paradigm because it provides a
model for a variety of systems, such as the modes
of the electrodynamic field (photons) and the vibra-
tions of molecules and solids (phonons).

A. Classical harmonic oscillator

The classical harmonic oscillator describes a
particle subject to a restoring force F = −mω2x
proportional to the distance from an equilibrium
position x = 0. Newton’s equation mẍ = F re-
sults in an oscillatory motion x(t) = x0 cosωt +
(v0/ω) sinωt, where ω = 2π/T and T is the oscil-
lation period. In this solution, x0 = x(0) is the
initial position and v0 = ẋ(0) is the initial veloc-
ity of the particle. According to F = −V ′, the force
F = −mω2x corresponds to a parabolic potential
energy

V (x) =
1

2
mω2x2. (6.1)

B. Schrödinger equation of the quantum harmonic
oscillator

In order to solve this problem quantum mechan-
ically, we follow our standard steps. The Schrö-
dinger equation of the harmonic oscillator is given
by

Eψ(x) = − ~2

2m
ψ′′(x) +

1

2
mω2x2ψ(x). (6.2)

This equation is again a linear differential equation
of second order, but now one coefficient is position
dependent. From our general considerations we
already can anticipate the following:

• The solutions ψ(x) are continuous.

• The derivatives ψ′(x) of the solutions are also
continuous.

• As V (x) → ∞ for |x| → ∞, the particle cannot
escape to infinity at finite energy E. This only
permits bound states, which decay ψ(x) → 0
as |x| → ∞.

• The energies of the bound states are discrete
(i.e., only at certain energies we can find valid
solutions of the Schrödinger equation).

• The ground state energy E0 will be larger than
the classical minimal energy: E0 > 0.

C. Mathematical solution

Let us first focus on finding the mathematical
solutions of the Schrödinger equation. We start by
bringing the Schrödinger equation into a simpler,
rescaled form. Denote ψ(x) = ϕ(x

√
mω/~), which

corresponds to a rescaled position y = x
√
mω/~.
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According to the chain rule, ψ′ =
√
mω/~ϕ′ and

ψ′′ = (mω/~)ϕ′′. We also write energy as E = ~ω
2 ε.

In terms of ϕ, the Schrödinger equation then reads

~ω
2
εϕ(y) = −~ω

2
ϕ′′(y) +

~ω
2
y2ϕ(y), (6.3)

or, after cancelling the common factor ~ω
2 ,

εϕ(y) = −ϕ′′(y) + y2ϕ(y). (6.4)

Next, we introduce the new function ϕ(y) =

e−y
2/2f(y). By applying the product rule, we then

find the following standard differential equation:

εf = −f ′′ + 2yf ′ + f. (6.5)

When ε 6= 2n + 1, where n = 0, 1, 2, . . . is an in-
teger, the solutions of Equation (6.5) grow rapidly
for |y| → ∞, even outgrowing the factor exp(−y2/2)

appearing in ϕ(y) = e−y
2/2f(y). These solutions do

not fulfil our boundary conditions for |x| → ∞ and
hence have to be discarded.

For ε = 2n + 1, n = 0, 1, 2, . . ., however, Eq. (6.5)
has simple solutions f(y) = Hn(y) which are just
polynomials of degree n. These polynomials are
known as the Hermite polynomials. The first two of
these polynomials are simply H0 = 1 and H1 = 2y.
The other polynomials can be calculated recur-
sively, Hn+1(y) = 2yHn(y)− 2nHn−1(y).

D. Ground state and first excited state

The first two solutions correspond to the ground
state and the first excited state of the harmonic
oscillator:

Ground state: n = 0, f = 1, which gives to f ′ =
f ′′ = 0. This is a solution of Eq. (6.5) if ε = 1,
which corresponds to an energy E0 = 1

2~ω. The
wave function is given by

ψ0(x) = c0 exp
(
−x2mω

2~

)
,

where c0 can be determined from the normalisa-
tion condition

∫∞
−∞ |ψ(x)|2 dx = 1 (see below). This

gives c0 =
(
mω
π~
)1/4

.
First excited state: n = 1, f = 2y, hence f ′ = 2

and f ′′ = 0. This is a solution of Eq. (6.5) if ε = 3,
which corresponds to E1 = 3

2~ω. The wave function
is given by

ψ1(x) = c1x exp
(
−x2mω

2~

)
,

with normalisation constant c1 =
(

4m
3ω3

π~3

)1/4

.

E. Normalisation of the ground state wave function

The ground state wave function of the harmonic
oscillator provides us with a good occasion to prac-
tice once more the normalisation of the wave func-
tion. Since we want to interpret |ψ0(x)|2 = P (x) as
the probability density for position, we require∫ ∞

−∞
|ψ0(x)|2 dx = 1.

With ψ0(x) = c0 exp(−x2mω
2~ ) this integral reads∫ ∞

−∞
c20 exp

(
−x2mω

~

)
dx.

We use the standard integral
∫∞
−∞ exp(−ax2) dx =√

π/a, where we set a = mω
~ :∫ ∞

−∞
c20 exp

(
−x2mω

~

)
dx = c20

√
π~
mω

.

The equates to 1 if c0 =
(
mω
π~
)1/4

, in agreement with
the value given in the previous section.

F. General form of the bound states

In general, the normalised bound-state wave
functions are given by

ψn = CnHn(xα)e−x
2α2/2, (6.6)

n = 0, 1, 2, 3, . . ., Cn = α1/2π−1/4(n!2n)−1/2, where α =√
mω
~ .

The associated bound-state energies are

En = ~ω
(
n+

1

2

)
, n = 0, 1, 2, . . . . (6.7)

Note that the difference between two consecutive
energies is given by Planck’s relation E = ~ω.

You could now draw diagrams of the poten-
tial, bound state energies, ground- and excited
state wave functions, and the associated probabil-
ity densities of the particle position.

VII. MOMENTUM PROBABILITIES AND THE UNCERTAINTY
PRINCIPLE

So far we have a quantitative prescription to ob-
tain the probability density to find a particle some-
where in space: P (x) = |ψ(x)|2. In this section
we introduce probabilities of momentum and de-
scribe how they are related to position probabili-
ties. This culminates in the celebrated Heisenberg
uncertainty principle.
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A. Momentum wave function

In analogy to the case of position x, we can in-
troduce a momentum wave function ψ̃(p), which
delivers the probability to find the value p in a mo-
mentum measurement as P (p) = |ψ̃(p)|2. This mo-
mentum wave function is given by

ψ̃(p) = (2π~)−1/2

∫ ∞
−∞

exp(−ipx/~)ψ(x) dx. (7.1)

Mathematically, this is known as the Fourier trans-
formation of ψ(x) and simply decomposes ψ(x) into
plane waves exp(ipx/~). Note that such plane
waves are eigenfunction of the momentum opera-
tor, p̂ exp(ipx/~) = p exp(ipx/~). The Fourier trans-
form in Eq. (7.1) involves the complex conjugate
exp(−ipx/~) of this function. The factor (2π~)−1/2

ensures that the resulting probability density of
momentum P (p) = |ψ̃(p)|2 is properly normalised.
In other words, we can write Eq. (7.1) also as

ψ̃(p) =

∫ ∞
−∞

ψ∗p(x)ψ(x) dx, (7.2)

where ψp(x) is the momentum eigenfunction given
in (3.3).

Observe that according to Eq. (7.1), ψ(x) and ψ̃(p)
are not independent of each other. Hence, P (x)
and P (p) are also not independent of each other,
which has direct physical consequences such as
Heisenberg’s uncertainty relation, to which we
come shortly.

B. Expectation values of position and momentum

The averaged result of many experiments mea-
suring some observable Â is called the expectation
value of Â, denoted by 〈A〉. According to the gen-
eral rules for probabilities, the expectation value
is obtained from the probability density P (A) by
weighting it with the result A:

〈A〉 =

∫
AP (A) dA. (7.3)

We can also calculated expectation values of
functions of A, such as A2:

〈A2〉 =

∫
A2P (A) dA. (7.4)

Hence, the expectation value of position is

〈x〉 =

∫
x |ψ(x)|2 dx, (7.5)

and the expectation value of position-squared is

〈x2〉 =

∫
x2|ψ(x)|2 dx. (7.6)

The expectation values of momentum are given
by 〈p〉 =

∫
pP (p) dp =

∫
p |ψ̃(p)|2 dp, 〈p2 〉 =∫

p2P (p) dp =
∫
p2 |ψ̃(p)|2 dp. Now, using standard

theorems about the Fourier transformation (see
PHYS213), one can express these expectation val-
ues directly in terms of the wave function ψ(x):

〈p〉 =

∫
ψ∗(x)[p̂ ψ(x)] dx (7.7)

= −i~
∫
ψ∗(x)ψ′(x) dx, (7.8)

〈p2〉 =

∫
ψ∗(x)[p̂2 ψ(x)] dx (7.9)

= −~2

∫
ψ∗(x)ψ′′(x) dx. (7.10)

Hence, in order to calculate these expectation val-
ues one does not need to carry out a Fourier trans-
formation; instead, one only needs to evaluate an
ordinary integral.

C. Uncertainty

A particularly useful quantity related to the ex-
pectation values is the standard deviation

∆A =
√
〈A2〉 − 〈A〉2. (7.11)

In quantum mechanics, the standard deviation is
known as the uncertainty of the observable A.

In simple situations, P (A) is peaked around
some value. The expectation value 〈A〉 then gives
us an indication of the position of this peak, while
∆A gives us an indication of the width of this peak.

D. Heisenberg’s uncertainty relation

Using again standard theorems about the
Fourier transformation (see PHYS213), a strongly
peaked position wave function ψ(x) corresponds to
a very broad momentum wave function ψ̃(p), and
vice versa. Mathematically, this can be expressed
as a relation for the uncertainties of momentum
and position:

∆x∆p ≥ ~/2. (7.12)

This is the celebrated Heisenberg uncertainty rela-
tion. As a consequence, the better the position of
a particle is determined, the less precisely deter-
mined is its momentum, and vice versa.

This relation also explains the zero-point energy
of a particle in a potential, which we already have
encountered for the particle in the square well.
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Classically, the minimal total energy E = Vmin is
obtained when the particle rests at the minimum
of the potential. A quantum-mechanical particle
never can be at rest at a potential minimum, since
then both its position (at the minimum) and its mo-
mentum (which vanishes at rest) would be fixed.

E. Example I: Minimal-uncertainty wave packet

Minimal-uncertainty wave packets are states
that satisfy Eq. (7.12) as an equality

∆x∆p =
~
2

(for minimal uncertainty). (7.13)

Their general form is

ψ(x) = (2πσ2)−1/4 exp

[
− (x− x0)2

4σ2
+
i

~
p0(x− x0)

]
,

(7.14)
where x0, p0, and σ are real parameters.

The probability density P (x) = |ψ(x)|2 associated
with a minimal-uncertainty wave packet takes the
form of a normal distribution

P (x) = |ψ(x)|2 = (2πσ2)−1/2 exp[−(x− x0)2/2σ2].
(7.15)

The distribution is symmetric around x0, hence
〈x̂〉 = x0. The uncertainty is given by ∆x = σ, and
is independent of x0.

The momentum wave function ψ̃(p) is obtained
via the Fourier transformation (7.1). The result is

ψ̃(p) = (~2π/2σ2)−1/4 exp

[
−σ

2(p− p0)2

~2
− i

~
px0

]
,

(7.16)
which gives

P (p) = (~2π/2σ2)−1/2 exp
[
−2σ2(p− p0)2/~2

]
. (7.17)

This is again a normal distribution, shifted away
from the origin by 〈p̂〉 = p0. The widths can be read
off by comparing to Eq. (7.15): σ2 is replaced by
~2/4σ2. Hence ∆p = ~

2σ , and the product of uncer-
tainties ∆x∆p indeed satisfies Eq. (7.13).

Minimal-uncertainty wave packets have many
applications, especially since they are the best ap-
proximation to the ”classical” situation in which
both the position and the momentum of a parti-
cle are specified at the same time. A prominent
example of a minimal-uncertainty wave packet is
the ground state of a harmonic oscillator, which is
discussed on a worksheet.

F. Example II: ground state of the particle in the square
well

Let us now consider the ground state wave func-
tion of a particle in a square well with two hard

walls at x = ±L/2. This wave function is given by

ψ =
√

2
L cos(πx/L) in between the walls, and van-

ishes inside the walls.
We find the expectation values 〈x〉 = 0, 〈p〉 = 0,
〈x2〉 = L2(1/12 − 1/2π2), and 〈p2〉 = ~2π2/L2. Hence
∆x ≈ 0.181L and ∆p = ~π/L, so that ∆x∆p ≈ 0.57~,
which clearly fulfils the uncertainty relation.

The maximal position uncertainty ∆xmax = L/2
is obtained for a particle that sits with equal prob-
ability at x = ±L/2. Hence, the uncertainty in mo-
mentum in any state fulfils ∆p ≥ ~/L.

This can be used to give a lower bound for the
ground state (or zero-point) energy: E1 = 〈p2〉/2m ≥
(∆p)2/2m ≥ ~2

2mL2 . The exact result E1 = ~2π2

2mL2

clearly fulfills this condition.

G. Energy-time uncertainty relation

In the Schrödinger equation, time is not an ob-
servable but a parameter. Hence, no operator is
associated with time. However, it is still useful to
talk about the duration of events in quantum me-
chanics. A good example is an atomic excitation,
which decays over a certain time ∆t. If one looks at
the outgoing radiation, the frequency is not sharp
but spread over a range ∆ω ∼ 1/∆t (you will ver-
ify this on a worksheet). In quantum mechanics,
frequency is related to energy via E = ~ω, and one
ends up with the energy-time uncertainty relation

∆t∆E ≥ ~/2. (7.18)

The specific value ~/2 of the lower bound can be
motivated from the similar forms of the energy and
momentum operators Ê = i~ ∂

∂t and p̂ = −i~ ∂
∂x ,

which differ (besides the sign) only by the variable
which they differentiate (t or x).

Even though the energy-time uncertainty rela-
tion stands on a different footing than the position-
momentum uncertainty relation, it is as useful as
the latter. In many cases a quantum system is
excited into a state of a finite lifetime. Fluores-
cent atoms are one example, radioactive nuclei an-
other. In solids, charge carriers occupy the avail-
able states only with a finite lifetime because they
are disturbed by disorder and interactions. In
these systems, often a detailed calculation of the
quantum dynamics is complicated, but the energy-
time uncertainty relation captures many impor-
tant effects.
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VIII. MATHEMATICAL INTERLUDE: HILBERT SPACES AND
LINEAR OPERATORS

In the next chapter we will formulate the gen-
eral principles of quantum mechanics. Here, we
introduce the necessary mathematical framework,
which concerns vectors, scalar products (a com-
plex version of the dot product), and operators. We
describe these entities in the powerful Dirac no-
tation, which is widely used throughout quantum
mechanics.

A. Vectors

The most common form of a vector is a collection
of components ψn, n = 1, . . . ,N , where N denotes
the dimension of the vector space. A function ψ(x)
can be consider as a vector in which the discrete
index n has been replaced by a continuous index x.
It is useful to introduce a formalism in which this
analogy can be exploited without direct reference
to the specific forms of the components ψn or ψ(x).

In Dirac notation, vectors are denoted as |ψ〉.
These vectors form a complex linear vector space,
which entails the following properties: Any vector
|ψ〉 can be scaled by any complex number α, i.e.,
we can form new vectors |αψ〉 = α|ψ〉. Further-
more, any two vectors |ψ〉, |χ〉 can be combined into
new vectors by a forming a superposition |ψ + χ〉 =
|ψ〉 + |χ〉. These operations obey the distributive
law (α + β)(|ψ〉+ |χ〉) = |αψ〉+ |βψ〉+ |αχ〉+ |βχ〉. In
addition, a vector space possesses a null vector |0〉
such that |0〉 + |ψ〉 = |ψ〉, and to each vector |ψ〉
there is an inverse vector |−ψ〉 = −|ψ〉 such that
|ψ〉 − |ψ〉 = |0〉

These properties are all nicely fulfilled for func-
tions. In particular, if ψ(x) and χ(x) are functions
and α, β are constants, then αψ(x) + βχ(x) is also
a function.

B. Scalar product, norm and orthogonality

The scalar product is a generalised versions of
the dot product, which associates a complex num-
ber 〈ψ|χ〉 to any pair of vectors |ψ〉, |χ〉. The scalar
product fulfils the important property

〈ψ|χ〉 = 〈χ|ψ〉∗. (8.1)

Consistently with this, the scalar product is linear
in the second argument, but conjugate linear in
the first argument, i.e., 〈ψ|αχ〉 = α〈ψ|χ〉, 〈αψ|χ〉 =
α∗〈ψ|χ〉, 〈ψ+ϕ|χ〉 = 〈ψ|χ〉+ 〈ϕ|χ〉, 〈ψ|ϕ+χ〉 = 〈ψ|ϕ〉+
〈ψ|χ〉.

In general, a scalar product must be positive def-
inite, 〈ψ|ψ〉 > 0 for |ψ〉 6= |0〉. We call ||ψ|| =

√
〈ψ|ψ〉

the norm of the vector |ψ〉 (this generalises the
notion of length of an ordinary vector). A vector
with 〈ψ|ψ〉 = 1 is called normalised (this gener-
alises the notion of a unit vector). The procedure of
passing from a vector |ψ〉 to the normalised vector
(1/||ψ||)|ψ〉 is called normalisation. Again in anal-
ogy to the case of ordinary vectors, two vectors |ψ〉,
|χ〉 fulfilling 〈ψ|χ〉 = 0 are said to be orthogonal to
each other.

In conjunction with a certain completeness con-
dition which is always fulfilled in quantum me-
chanics, a vector space equipped with a scalar
product is called a Hilbert space.

Formally, the scalar product can be interpreted
as a product 〈ψ|·|χ〉 between the vectors |χ〉 and the
entities 〈ψ|, which form the dual vector space. They
represent the left entries in the scalar product and
therefore are also conjugate linear: 〈αψ + βχ| =
α∗〈ψ| + β∗〈χ|. A dual vector is also called a bra,
and an ordinary vector is called a ket, alluding to
the fact that in the scalar product 〈ψ|χ〉 they form
a bracket (bra-ket). The introduction of these dual
vectors is an important step in the Dirac notation;
its usefulness will become clear when we discuss
operators (generalised matrices).

C. Basis

A basis is a collection of vectors |n〉, n =
1, 2, 3, . . . ,N such that any vector can be written as
a superposition |ψ〉 =

∑N
n=1 ψn|n〉, where the com-

plex coefficients ψn are unique. The coefficients
ψn give a representation of the vector, and can be
written as a column vector

ψ =


ψ1

ψ2

...
ψN

 . (8.2)

The corresponding dual vector is written as a row
vector ψ† = (ψ∗1 , ψ

∗
2 , . . . , ψ

∗
N ). While there are many

possible bases, in which the same vector is repre-
sented by different coefficients, the number N of
basis vectors required to obtain all vectors is al-
ways the same, and is called the dimension of the
vector space (N may be ∞).

An orthogonal basis fulfills 〈n|m〉 = 0 for any
n 6= m. If furthermore 〈n|n〉 = 1 for all n one
speaks of an orthonormal basis. In such a basis,
the coefficients representing a vector are given by
ψn = 〈n|ψ〉, and the scalar product takes the ex-
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plicit form

〈ψ|χ〉 =
∑
n

ψ∗nχn = ψ†χ. (8.3)

Thus, a vector |ψ〉 is normalised if its coefficients
in an orthonormal basis obey∑

n

|ψn|2 = 1. (8.4)

For functions ψ(x), the summation over the dis-
crete index is replaced by an integration, |ψ〉 =∫
ψ(x)|x〉 dx. In this case the dimension of the vec-

tor space is infinite. The orthonormality of a basis
can be stated with help of the Dirac delta function,
〈x|x′〉 = δ(x − x′). In the scalar product, the sum-
mation over the discrete index n = 1, 2, . . . is again
replaced by an integration over the continuous in-
dex x,

〈ψ|ϕ〉 =

∫
ψ∗(x)ϕ(x) dx. (8.5)

This type of integral is called an overlap integral.
The expression for the expansion coefficients takes
the form ψ(x) = 〈x|ψ〉, and the normalisation con-
dition translates into∫

|ψ(x)|2 dx = 1.

D. Linear operators

An operator Â converts any vector |ψ〉 into an-
other vector |Âψ〉 = Â|ψ〉. Linear operators fulfill
Â(α|ψ〉+β|χ〉) = αÂ|ψ〉+βÂ|χ〉, where α, β are com-
plex numbers. Operators can be added according
to the rule (Â+ B̂)|ψ〉 = Â|ψ〉+ B̂|ψ〉, and multiplied
according to the rule (B̂Â)|ψ〉 = B̂(Â|ψ〉).

In Dirac notation, operators are written as Â =∑
nmAnm|n〉〈m|, and the action of an operator is

obtained from the multiplication rule 〈m| · |ψ〉 =
〈m|ψ〉. Thus,

Â|ψ〉 =
∑
nm

Anm|n〉〈m|ψ〉 =
∑
n

(∑
m

Anm〈m|ψ〉

)
|n〉.

(8.6)
Assuming that the states |n〉, |m〉 in the defini-

tion of Â form an orthonormal basis, the operator
can be represented by N × N-dimensional square
matrices

A =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN

 (8.7)

where, the matrix elements Anm are obtained from
Anm = 〈n|Âm〉 ≡ 〈n|Â|m〉. Since in an orthonor-
mal basis 〈m|ψ〉 = ψm, the operator then acts on
a vector according to the standard rules of matrix
multiplication, i.e., |ϕ〉 = Â|ψ〉 is represented by
a vector with coefficients ϕn =

∑
mAnmψm. Fur-

thermore, the operator addition and multiplication
rules then translate to the usual prescriptions of
matrix addition and multiplication.

E. Eigenvalues and eigenvectors

The action of an operator is particularly simple
in its eigenrepresentation, defined by a basis fulfill-
ing the eigenvalue equation Â|n〉 = an|n〉. The num-
bers an are called eigenvalues, and the associated
vectors |n〉 are called eigenvectors. When appropri-
ate, these eigenvectors are also called eigenfunc-
tions.

If the eigenvectors form an orthonormal basis (as
is the case for the hermitian and unitary operators
considered below), the eigenrepresentation results
in a diagonal matrix, with Anm = 0 if n 6= m and
Ann = an. In Dirac notation, the operator can then
be written as Â =

∑
n an|n〉〈n|.

F. Common types of operators

A particularly simple operator is the identity op-
erator Î which leaves all states unchanged, Î|ψ〉 =
|ψ〉. Every state is therefore an eigenstate of Î,
with eigenvalue 1. Consequently, in any orthonor-
mal basis this operator takes the same form Î =∑
n |n〉〈n|. Representations are simply obtained

by multiplying out the identities |ψ〉 = Î|ψ〉 and
Â = ÎÂÎ. In a given orthonormal basis, it is use-
ful to decompose the identity Î =

∑
P̂n as the

sum of projection operators P̂n = |n〉〈n|, which fulfill
P̂nP̂m = 0 if n 6= m, and P̂ 2

n = P̂n.
For each operator Â we can define an adjoint op-

erator Â† by setting 〈ψ|Â†χ〉 = 〈Âψ|χ〉. In an or-
thonormal basis we then have A†nm = A∗mn. For
many operators, we can also define an inverse op-
erator Â−1 which fulfils ÂÂ−1 = Î.

Two important types of operators are hermitian
operators Ĥ and unitary operators Û . For any two
states |ψ〉, |χ〉, hermitian operator fulfill 〈ψ|Ĥχ〉 =
〈Ĥψ|χ〉, while unitary operators fulfill 〈Ûψ|Ûχ〉 =
〈ψ|χ〉. This entails Ĥ = Ĥ† and Û† = Û−1. In an
orthonormal basis, the matrix elements of a her-
mitian operator fulfill Hnm = H∗mn, while those of a
unitary operator fulfill

∑
l UnlU

∗
ml = δnl.

Both classes of operators have the nice property
that their sets of normalised eigenvectors form an
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orthonormal basis. For hermitian operators, the
eigenvalues an are real, while for unitary operators
they fulfill |an| = 1.

Unitary operators are analogous to orthogonal
matrices which rotate a coordinate system. In par-
ticular, any basis change from one orthonormal
basis |n〉 to another orthonormal basis |ñ〉 can be
written as |ñ〉 = Û |n〉, where Û is a suitable uni-
tary operator. A common form of unitary oper-
ators relates them to a hermitian operator Ĥ via
Û = exp(iτĤ), where τ is a real constant and the
exponential of an operator is defined via its Tay-
lor expansion, exp(Â) =

∑∞
n=0 Â

n/n!. In this case,
Û−1 = Û† = exp(−iτĤ). Furthermore, the opera-
tors Ĥ and Û then share the same eigenvectors:
If Ĥ =

∑
n hn|hn〉〈hn|, then Û =

∑
n un|hn〉〈hn| with

eigenvalues un = exp(iτhn).

IX. GENERAL PRINCIPLES OF QUANTUM MECHANICS

We now have all the tools to formulate the gen-
eral principles of quantum mechanics, which we
state in terms of four postulates.

A. Quantum states

Postulate I: All experimentally accessible infor-
mation about a quantum system is contained in a
state vector |ψ〉.

Remarks: An example is the wave function ψ(x)
of a point particle in one dimension. In three di-
mensions a point particle is described by a wave
function ψ(x, y, z). We will also discuss the state of
two particles with position r1 and r2, which is de-
scribed by a wave function ψ(r1, r2). Furthermore,
we encounter the spin of an electron, which is de-
scribed by a two-component vector ψ =

(
ψ↑
ψ↓

)
.

B. Observables and operators

Postulate II: Each experimentally observable
quantity Â is represented by a hermitian linear op-
erator.

Remarks: Here, the term observable refers to
any measurable quantity. Examples are position
x̂ = x, momentum p̂ = −i~ d

dx , energy Ĥ = p̂2/2m +

V (x), but also kinetic energy T̂ = p̂2/2m and poten-
tial energy V̂ = V (x) can serve as observables. An-
other example is the angular momentum L̂ = r̂× p̂
in three-dimensional systems, where r̂ = (x̂, ŷ, ẑ) is
a vector composed of the three position operators,
and p = (p̂x, p̂y, p̂z) is a vector composed of the three
momentum operators px = −i~ ∂

∂x , py = −i~ ∂
∂y ,

pz = −i~ ∂
∂z . Later we will also consider an anal-

ogous vector operator Ŝ = (Ŝx, Ŝy, Ŝz) representing
the spin of an electron.

In the context of quantum mechanics, eigenvec-
tors |an〉 of an observable Â are also called eigen-
states. The property of hermiticity ensures that all
the eigenvalues an are real, while the eigenstates
can be used to construct an orthonormal basis.

C. Dynamics

Postulate III: The time evolution |ψ(t)〉 of a quan-
tum state is governed by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (9.1)

where Ĥ is a system-specific hermitian operator
called Hamiltonian.

Remarks: In the particular case Ĥ = const(t) of a
time-independent Hamiltonian, the eigenvalues of
Ĥ are denoted as En, and are interpreted as ener-
gies of solutions |ψ(t)〉 = exp(−iEnt/~)|n〉. Here, the
stationary states |n〉 fulfill the eigenvalue equation
En|n〉 = Ĥ|n〉, which is known as the stationary
Schrödinger equation.

Given an initial state |ψ(t0)〉, the general solu-
tion can always be written as |ψ(t)〉 = Û(t, t0)|ψ(t0)〉,
where Û(t, t0) is a unitary operator called the
time evolution operator. This operator fulfills the
Schrödinger equation i~ d

dt Û(t, t0) = Ĥ(t)Û(t, t0)

with initial condition Û(t0, t0) = Î. For a time-
independent Hamiltonian, the time evolution op-
erator takes the explicit form

Û(t, t0) = exp[−i(t− t0)Ĥ/~]. (9.2)

Using the eigenrepresentation Ĥ =
∑
nEn|n〉〈n|

of the Hamiltonian we can write Û(t, t0) =∑
n exp[−i(t − t0)En/~]|n〉〈n|. We will examine time

dependence in detail in later chapters.

D. Measurements

The last postulate concerns the remarkable
quantum effects which occur when one determines
the value of an observable in an experiment. Since
this is the most complicated postulate we break it
down into three aspects.

1. Experimentally observable values

Postulate IVa: In an experiment that determines
the value a of an observable with associated opera-
tor Â, the only possible (allowed) observable values
are the eigenvalues an of Â.
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Remarks: E.g., when one measures the energy
of a particle bound in a potential well, the only
possible results are the discrete energies En de-
termined by the stationary Schrödinger equation.
Because of the hermiticity constraint on such op-
erators, these values are always real.

2. Generalised wave function and probability

Postulate IVb: If the normalised state of the sys-
tem at the time of the measurement is |ψ〉, each
outcome occurs with probability

P (a) =
∑
an=a

|〈n|ψ〉|2 =
∑
an=a

〈ψ|P̂n|ψ〉, (9.3)

where |n〉 is the eigenstate associated with an, and
P̂n = |n〉〈n| is the associated projection operator.

Remarks: Using the orthonormality of the eigen-
states |n〉 and the normalisation condition 〈ψ|ψ〉 =
1, it follows that the probability P (a) is automati-
cally normalised:

∑
a P (a) = 1 if a is discrete, and∫

P (a) da = 1 if a is continuous.
Disregarding for the moment the possibility that

eigenvalues are degenerate, it is useful to inter-
pret the probability in terms of a generalised wave
function

ψA(an) = 〈n|ψ〉, (9.4)

which consists of the coefficients of the wave func-
tion in the eigenbasis of Â,

|ψ〉 =
∑
n

ψA(an)|n〉. (9.5)

The probability P (a) that an experiment returns
the value Â = a is then given by

P (a) = |ψA(a)|2. (9.6)

In one dimension, the generalised wavefunction
is given by the overlap integral

ψA(an) =

∫
ψ∗n(x)ψ(x) dx. (9.7)

An example is the momentum wave function
ψ̃(p), discussed in section VII.A, which is calcu-
lated with help of the momentum eigenfunction
ψp(x) = (2π~)−1/2 exp(ipx/~) dx, and corresponds to
a Fourier transformation. The factor (2π~)−1/2 pro-
vides that P (p) = |ψ̃(p)|2 is properly normalised.

3. Effect of experiments on the system state

Postulate IVc: A measurement with outcome a
transforms the quantum state into the state

|ψ′〉 =
√

1/P (a)
∑
an=a

P̂n|ψ〉. (9.8)

Remarks: Using the decomposition (9.5) of
the pre-measurement state |ψ〉 in the eigenba-
sis of the measured observable Â, the post-
measurement state can be written as |ψ′〉 =√

1/P (a)
∑
an=a ψA(an)|n〉. Thus, only the compo-

nents of the eigenstates with eigenvalue compati-
ble to the measured outcome a are retained, and
the result is then normalised. It follows that |ψ′〉 is
an eigenstate of Â. In the case that the eigenvalues
are not degenerate, a measurement with outcome
an simply transforms the state of the system into
the eigenstate |n〉.

X. CONSEQUENCES OF THE MEASUREMENT POSTULATE

We now formulate some practical consequences
of the measurement postulate which greatly sim-
plify the characterisation of the measured results.

A. Expectation values

We define the expectation value of an observable
A via 〈A〉 =

∫
aP (a) da (for a continuous observable)

or 〈A〉 =
∑
a aP (a) (for a discrete observable). This

represents the averaged outcome of many experi-
ments on identically prepared quantum systems.

Inserting the expression (9.3) for the probability
P (a) and making use of the form Â =

∑
n an|n〉〈n|

of the operator in the eigenrepresentation, we find
the important result

〈A〉 = 〈ψ|Â|ψ〉. (10.1)

This allows us to calculate an expectation value
without determining all eigenfunctions and eigen-
values of Â. In particular, for a particle with wave
function ψ(x), the expectation value is given by

〈A〉 =

∫
ψ∗(x)[Âψ(x)] dx. (10.2)

The expectation value

〈Am〉 = 〈ψ|Âm|ψ〉 (10.3)

is known as the mth moment of Â. The uncer-
tainty of an observable is defined as the root-mean
square standard deviation

∆A =
√
〈A2〉 − 〈A〉2. (10.4)

B. Consecutive measurements

When the system state is identical to an eigen-
state |n〉 of Â, it follows from the orthonormality of
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these states that P (a) = 0 vanishes for all a 6= an,
while P (an) = 1. In this special case, the value of
the observable is well defined, and ∆A = 0. The
final part IV c of the measurement postulate as-
serts that this situation is realised right after a
measurement. Therefore, in immediately repeated
measurements of the same observable one will ob-
tain a sequence of identical results. However, while
the post-measurement state is an eigenstate of the
measured observable, it is in general not an eigen-
state of other relevant observables. Thus, if one
consecutively measures the values of different ob-
servables one will in general obtain a random se-
quence of outcomes with finite probabilities. The
following considerations provide a simple rule that
quantifies these observations in terms of the un-
certainties of the different observables.

C. Commutator

For each pair of operators Â(1), Â(2) we can intro-
duce a new operator, called the commutator, which
is denoted by [Â(1), Â(2)]. This operator is defined as

[Â(1), Â(2)] = Â(1)Â(2) − Â(2)Â(1). (10.5)

In other words, the commutator is an operator
which acts as

[Â(1), Â(2)]ψ = Â(1)Â(2)ψ − Â(2)Â(1)ψ. (10.6)

If Â(1) and Â(2) were numbers the commutator
would clearly vanish. For operators, however, the
order generally matters. For instance, applying the
product rule one finds d

dx (xψ) = ψ + x d
dx (ψ). Since

p̂ = −i~ d
dx this gives

[x̂, p̂] = i~,

which is the most important of all commutators.
For some operators, [Â(1), Â(2)] = 0. One then

say that the operators Â(1) and Â(1) commute. An
example is found in three-dimensional systems:
Since the momentum operators are defined by par-
tial derivatives we have, e.g., [x̂, p̂y] = 0.

The importance of the commutator results from
the following mathematical theorem: if two opera-
tors commute (i.e., their commutator [Â(1), Â(2)] = 0
vanishes) then the eigenstates of Â(1) are identi-
cal to the eigenstates of Â(2). This holds even
though the eigenvalues a

(1)
n , a

(2)
n of both opera-

tors are generally different. In the joint eigenba-
sis, the operators then read Â(1) =

∑
n a

(1)
n |n〉〈n|,

Â(2) =
∑
n a

(2)
n |n〉〈n|.

D. Generalised uncertainty principle

Heisenberg’s uncertainty principle can be gen-
eralised to quantify the extent of incompatibility
of two arbitrary observables A(1), A(2) in terms of
their uncertainties ∆A =

√
〈A2〉 − 〈A〉2:

∆A(1)∆A(2) ≥ 1

2

∣∣∣〈[Â(1), Â(2)]〉
∣∣∣ . (10.7)

This gives a lower bound for the product of un-
certainties of two observables, and expresses this
lower bound by the expectation value of their com-
mutator. For momentum and position, [x̂, p̂] = i~,
which is just a constant. Therefore 〈i~〉 = i~, and
|i~| = ~. This recovers the conventional uncertainty
relation ∆x∆p ≥ ~/2.

E. Simultaneous and incompatible variables

According to Heisenberg’s uncertainty principle,
for commuting observables we find

∆A(1)∆A(2) ≥ 0. (10.8)

But since the uncertainty of any observable Â is
never negative, ∆A ≥ 0, this uncertainty relation
poses no restriction whatsoever.

Indeed, if the wave function of a system is iden-
tical to a joint eigenfunction of two commuting op-
erators Â(1) and Â(2), then the values of these op-
erators are both defined precisely. Because of this,
observables with vanishing commutator are also
called simultaneous variables. An example is the
position x̂ and the momentum p̂y, which can be
both determined at the same time (the wave func-
tion ψ(x, y) is then well localised in x direction,
while it looks like a plane wave in y direction).

On the other hand, pairs of observables such as
x̂ and p̂x which do not commute are called incom-
patible, as they cannot be both fixed at the same
time.

We can also understand this difference by recon-
sidering the effects of consecutive measurements
of two observables Â(1) and Â(2).

• If the observables commute, then the order of
measurements does not affect the probabili-
ties, which are both calculated with the same
(joint) eigenstates |n〉. After the two experi-
ments, the state of system is a joint eigen-
state, in which both observables are well de-
fined.

• If the two observables are incompatible, the
order of measurements matters. This is be-
cause the generalised wave function of both
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observables has to be calculated with differ-
ent eigenstates. Moreover, the state of the
system after the two experiments is an eigen-
function of the observable that has been mea-
sured last. In this state, only the second ob-
servable is well defined, but the first observ-
able is not (so if one carries out a third ex-
periment which measures again the first ob-
servable, one generally finds a different value
than in the first measurement).

In this sense, a measurement of an observable
destroys the information obtained in earlier mea-
surements of incompatible observables, but does
not destroy the information obtained in earlier
measurements of simultaneous observables.

F. Complete determination of a state by measurements

In many situations the values of one observ-
able alone do not suffice to uniquely determine the
state of a system. This occurs whenever eigen-
values are degenerate, and thus are associated
with several eigenstates. In such situations the
complete determination of a state requires to mea-
sure a larger set Â(l) of simultaneous observables
that all commute with each other, [Â(l), Â(m)] = 0.
This property guarantees that one can find a joint
eigenbasis for all of these observables, given by
states |a〉 = |a(1), a(2), a(3), . . .〉 fulfilling Â(l)|a〉 =
a(l)|a〉. These states are only fully specified by
knowledge of the eigenvalues a(l) of the full set of
simultaneous observables.

XI. PERTURBATION THEORY

Perturbation theory is a general method to anal-
yse complex quantum systems in terms of simpler
variants. The method relies on the expectation val-
ues, matrix elements and overlap integrals just in-
troduced, which we now use to break down com-
plex quantum processes into simpler parts. We fo-
cus on the simplest version of the method, which
results in simple systematic approximations of en-
ergy levels. For completeness we also present de-
tails of the derivation, which illustrates the power
of the Dirac notation.

A. Objective

We want to find approximations for the energies
En and eigenstates |ψn〉 of a Hamiltonian Ĥ,

En|ψn〉 = Ĥ|ψn〉, (11.1)

assuming that the Hamiltonian is of the form Ĥ =
Ĥ(0) + ŵ, where Ĥ(0) represents a simplified system
with energies E(0)

n and eigenstates |ψ(0)
n 〉 solving the

Schrödinger equation

E(0)
n |ψ(0)

n 〉 = Ĥ(0)|ψ(0)
n 〉. (11.2)

The difference ŵ = Ĥ − Ĥ(0) between the real and
the simplified system is called the perturbation,
and the approximation scheme is called perturba-
tion theory.

B. Method

The idea of perturbation theory is to assume that
the perturbation ŵ = λŴ is the product of an op-
erator Ŵ and a small number λ (determining the
strength of the perturbation).

Since the Hamiltonian

Ĥ = Ĥ(0) + λŴ (11.3)

now depends on the parameter λ, the energies En
and eigenstates |ψn〉 also depend on this parame-
ter.

Consequently, we can expand the energies and
eigenstates into a series:

En(λ) = E(0)
n + λE(1)

n + λ2E(2)
n + · · ·

=

∞∑
l=0

λlE(l)
n , (11.4)

|ψn(λ)〉 = |ψ(0)
n 〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · ·

=

∞∑
l=0

λl|ψ(l)
n 〉. (11.5)

Perturbation theory provides a systematic
scheme to express the quantities E(l)

n and |ψ(l)
n 〉 in

terms of the unperturbed energies E(0)
n , the unper-

turbed eigenstates |ψ(0)
n 〉, and the matrix elements

of the perturbation

Wmn = 〈ψ(0)
m |Ŵ |ψ(0)

n 〉.

The scheme commences by introducing the se-
ries expansions (11.4) and (11.5) into the Schrö-
dinger equation (11.1) and sorting the expressions
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order by order in λ:

E(0)
n |ψ(0)

n 〉+

λ(E(0)
n |ψ(1)

n 〉+ E(1)
n |ψ(0)

n 〉) +

λ2(E(0)
n |ψ(2)

n 〉+ E(1)
n |ψ(1)

n 〉+ E(2)
n |ψ(0)

n 〉) +

· · ·
=

Ĥ(0)|ψ(0)
n 〉+

λ(Ĥ(0)|ψ(1)
n 〉+ Ŵ |ψ(0)

n 〉) +

λ2(Ĥ(0)|ψ(2)
n 〉+ Ŵ |ψ(1)

n 〉) +

· · · (11.6)

In order to fulfill this equation, the expressions in
front of the powers λl have to be identical on both
sides of the equation.

Since we assume that the perturbation λ is
small, we concentrate on the first few orders.
Zeroth order perturbation theory:
In zeroth order of λ (collecting all terms that are
independent of λ) one finds

λ0 : E(0)
n |ψ(0)

n 〉 = Ĥ(0)|ψ(0)
n 〉. (11.7)

This equation is identical to the unperturbed
Schrödinger equation (11.2) and hence verifies
that we chose the correct leading coefficient in
each series. This result had to be expected since
for λ = 0 the Hamiltonian Ĥ = Ĥ(0) equals the
unperturbed Hamiltonian. Therefore the energies
En(λ = 0) = E

(0)
n are equal to the unperturbed en-

ergies, and the eigenstates |ψn(λ = 0)〉 = |ψ(0)
n 〉 are

identical with the unperturbed eigenstates.
First order perturbation theory:
In first order of λ (collecting all terms that are pro-
portional to λ) one finds

λ1 : E(0)
n |ψ(1)

n 〉+ E(1)
n |ψ(0)

n 〉 = Ĥ(0)|ψ(1)
n 〉+ Ŵ |ψ(0)

n 〉.
(11.8)

The coefficient E(1)
n and the state |ψ(1)

n 〉 can now
be determined using the orthonormality of the un-
perturbed eigenstates |ψ(0)

n 〉, i.e., 〈ψ(0)
m |ψ(0)

n 〉 = δnm,
where δnm = 1 if n = m and δnm = 0 if n 6= m.

In order to use this property, take the scalar
product of an unperturbed eigenstate |ψ(0)

m 〉 with
both sides of Eq. (11.8):

E(0)
n 〈ψ(0)

m |ψ(1)
n 〉+ E(1)

n δnm = E(0)
m 〈ψ(0)

m |ψ(1)
n 〉+Wmn.

(11.9)
Here we used 〈ψ(0)

m |Ĥ(0)ψ
(1)
n 〉 = 〈Ĥ(0)ψ

(0)
m |ψ(1)

n 〉 =

E
(0)
m 〈ψ(0)

m |ψ(1)
n 〉 and the definition of the matrix el-

ement Wmn.
For n = m, Eq. (11.9) reduces to

E(1)
n = Wnn, (11.10)

while for n 6= m we find

〈ψ(0)
m |ψ(1)

n 〉 =
Wmn

E
(0)
n − E(0)

m

. (11.11)

Since the unperturbed eigenstates form a complete
basis this gives

|ψ(1)
n 〉 =

∑
m 6=n

Wmn

E
(0)
n − E(0)

m

|ψ(0)
m 〉, (11.12)

where the sum is over all indices m, with the ex-
ception of m = n.
Second order perturbation theory:
By similar steps, one derives in the second order
of λ

E(2)
n =

∑
m6=n

|Wmn|2

E
(0)
n − E(0)

m

. (11.13)

In this course, we will not need |ψ(2)
n 〉, E(3)

n , or
higher terms of the perturbation series.

C. Summary of the result

• Perturbed energy in first order of λ:

En ≈ E(0)
n + λWnn. (11.14)

Hence, the energy shift En − E
(0)
n =

λ〈ψ(0)
n |Ŵ |ψ(0)

n 〉 = 〈ŵ〉 is given by the expecta-
tion value of the perturbation ŵ.

• Perturbed eigenstate in first order of λ:

|ψn〉 ≈ |ψ(0)
n 〉+ λ

∑
m 6=n

Wmn

E
(0)
n − E(0)

m

|ψ(0)
m 〉. (11.15)

• Perturbed energy in second order of λ:

En ≈ E(0)
n + λWnn + λ2

∑
m 6=n

|Wmn|2

E
(0)
n − E(0)

m

. (11.16)

In the following we only need these results, not
any details of their derivation.

D. Example I: worn out harmonic oscillator

We now discuss various simple examples of per-
turbed systems, including cases where we can
compare to exact solutions. The first example is a
worn-out oscillator, described by a reduced restor-
ing force F = −mω2

0x+λx. This corresponds to a po-
tential V = 1

2mω
2
0x

2 − 1
2λx

2, which is still parabolic,
and hence still describes a harmonic oscillator.
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Exact solution: The new oscillation frequency can
be calculated from the curvature of the potential,
mω2 = mω2

0 − λ, hence ω =
√
ω2

0 − λ/m. This deter-
mines the exact perturbed energies

En = ~ω(n+
1

2
). (11.17)

For small λ, the perturbed frequency can be ap-
proximated as

ω ≈ ω0 −
λ

2mω0
. (11.18)

We focus on the ground state, with n = 0. The per-
turbed ground state energy can be approximated
as

E0 ≈
1

2
~ω0 −

~λ
4mω0

. (11.19)

The first term is the unperturbed ground-state en-
ergy E

(0)
0 = ~ω0/2. Consequently, the energy shift

of the ground state is

E0 − E(0)
0 ≈ − ~λ

4mω0
. (11.20)

Perturbation theory: Let us see whether we can
recover this result in perturbation theory.

The Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2

0x
2 − 1

2
λx2 (11.21)

differs from the unperturbed harmonic oscillator
by the perturbation ŵ = − 1

2λx
2. According to first-

order perturbation theory, the energy shift of the
states is given by the expectation value of this per-
turbation, calculated with the unperturbed states.
Hence, the ground-state energy shift is

E0 − E(0)
0 ≈ 〈ψ(0)

0 |ŵ|ψ
(0)
0 〉 = −1

2
λ〈ψ(0)

0 |x̂2|ψ(0)
0 〉,
(11.22)

where ψ
(0)
0 (x) =

(
mω0

π~
)1/4

exp
(
−x2mω0

2~
)

is the
ground state wave function of the unperturbed
harmonic oscillator (see section VI). This state
has the form of a minimal-uncertainty wave packet
(see section VII.E), for which we already obtained
〈ψ(0)

0 |x̂2|ψ(0)
0 〉 = ~

2mω0
. Consequently, first-order

perturbation theory predicts

E0 − E(0)
0 ≈ −1

2
λ

~
2mω0

, (11.23)

which indeed agrees with Eq. (11.20).

E. Example II: harmonic oscillator exposed to a constant
force

Another exactly solvable perturbed problem de-
scribes a harmonic oscillator subjected to an addi-
tional constant force of strength λ, F = −mω2x+λ.
A constant force simply shifts the equilibrium po-
sition (the position where the force vanishes) to

x0 = λ/(mω2). (11.24)

The potential energy can be written as

V (x) =
1

2
mω2x2 − λx, (11.25)

hence, the perturbation is ŵ = −λx.
Exact solution: The potential energy can be writ-
ten so that the new equilibrium position becomes
apparent,

V (x) =
1

2
mω2(x− x0)2 − 1

2
mω2x2

0. (11.26)

This describes again a harmonic oscillator with the
same frequency ω as before, but oscillating around
x = x0. The states ψn(x) = ψ

(0)
n (x − x0) hence are

also simply shifted by x0. We can now introduce a
new coordinate y = x − x0, and recover the poten-
tial energy of the unperturbed harmonic oscillator.
The only difference the term

−1

2
mω2x2

0 = − λ2

2mω2
(11.27)

which shifts the bound state energies to a lower
value:

En − E(0)
n = − λ2

2mω2
. (11.28)

This result is exact. Notice that the shift is propor-
tional to the square λ2.
Perturbation theory: Let us see again whether
we can recover this result in perturbation theory.
Since the exact energy shift is proportional to the
square of the perturbation strength we have to re-
sort to second-order perturbation theory.

We again concentrate on the ground-state energy
E0. The first-order energy shift E0 − E(0)

0 ≈ λW00 is
given by the expectation value of the perturbation
Ŵ = −x̂,

W00 = −〈ψ(0)
0 |x̂|ψ

(0)
0 〉. (11.29)

Now notice that xψ(0)
0 (x) =

√
~/(2mω)ψ

(0)
1 (x) is pro-

portional to the wave function

ψ
(0)
1 (x) = c1x exp

(
−x2mω

2~

)
,
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of the first excited state of the unperturbed system,
calculated in section VI.

Hence

W00 = −〈ψ(0)
0 |x|ψ

(0)
0 〉 = −

√
~/(2mω)〈ψ(0)

0 |ψ
(0)
1 〉 = 0

(11.30)
due to the orthogonality of the eigenstates |ψ(0)

0 〉
and |ψ(0)

1 〉. This agrees with the absence of a term
linear in λ in the exact expression (11.28) of the
energy shift.

In second-order perturbation theory,

E0 ≈ E(0)
0 + λW00 + λ2

∑
m 6=n

|Wm0|2

E
(0)
0 − E(0)

m

, (11.31)

we have to calculate the matrix elements

Wm0 = 〈ψ(0)
m |Ŵ |ψ

(0)
0 〉 (11.32)

= −〈ψ(0)
m |x̂|ψ

(0)
0 〉 (11.33)

= −
√
~/(2mω)〈ψ(0)

m |ψ
(0)
1 〉 (11.34)

Again because of the orthogonality of the eigen-
states |ψ(0)

n 〉, all of these matrix elements vanish,
with the exception of the element

W10 = −
√
~/(2mω). (11.35)

Hence the energy shift reduces to

E0 − E(0)
0 ≈ |W10|2

E
(0)
0 − E(0)

1

. (11.36)

Moreover, since E(0)
n = ~ω(n + 1/2), we have E(0)

0 −
E

(0)
1 = −~ω. Collecting all results we obtain

E0 − E(0)
0 ≈ λ2 ~/(2mω)

−~ω
= − λ2

2mω2
, (11.37)

which agrees with the exact result (11.28).

F. Example III: anharmonic oscillator

The parabolic potential Vosc(x) = 1
2mω

2x2 is often
used as an approximation of the motion in around
an equilibrium position x − x0, such as in the vi-
bration of molecules or solids. The exact potential
V (x) can be expanded in a Taylor series around the
equilibrium position,

V (x) = V0 +
1

2
mω2(x− x0)2

+terms of order (x− x0)3 and higher.

(11.38)

In this expansion there are no terms linear in
(x − x0) since the force F = −V ′ vanishes at the
equilibrium position x = x0.

As we have seen in example II, the constant V0

simply shifts the energy, and the displacement by
x0 does not change the energies at all. In the fol-
lowing we set x0 = 0, V0 = 0.

The terms of order x3 and higher are called the
anharmonicity of the potential. Classically, they
perturb the motion of the oscillator so that the os-
cillation period T depends on the energy of the
oscillator (recall the period T of a harmonic os-
cillator is independent of the oscillation amplitude
∆x). Quantum mechanical, this results in a per-
turbation of the bound-state energies. For small
energies, the classical oscillation amplitude ∆x is
small, and hence the effect of the anharmonic
terms xn ∝ ∆xn should be small and rapidly de-
crease with n. We hence only account for the an-
harmonic term of lowest order in the Taylor series,

V (x) =
1

2
mω2x2 + λ

xn

n!
(11.39)

where typically n = 3, but sometimes also n = 4 or
larger due to symmetries of the problem.

Now we apply perturbation theory in order to
estimate the resulting energy shift of the ground
state.

In first-order perturbation theory, the energy
shift is given by the expectation value of the per-
turbation λxn/n!,

E0 − E(0)
0 =

λ

n!
〈ψ(0)

0 |xn|ψ
(0)
0 〉. (11.40)

We hence have to calculate the overlap integral

〈ψ(0)
0 |xn|ψ

(0)
0 〉 =

∫ ∞
−∞

xn|ψ(0)
0 (x)|2 dx (11.41)

=

∫ ∞
−∞

xn
(mω
π~

)1/2

exp
(
−x2mω

~

)
dx.

(11.42)

This integral vanishes if n is an odd integer, since
the integrand is antisymmetric (the integral from
−∞ to 0 exactly cancels the integral from 0 to ∞).
Hence, in first-order perturbation theory

E0 − E(0)
0 ≈ 0 (n odd). (11.43)

An energy shift is only found in second-order per-
turbation theory, which we however do not pursue
for the present problem.

For n and even integer we use the standard inte-
gral∫ ∞

−∞
xn exp(−ax2) dx =

√
πa−(n+1)/22−n

n!

(n/2)!
,

where we set a = mω
~ . This gives the first order

energy shift

E0 − E(0)
0 ≈ λ

(
~
mω

)n/2
2−n

(n/2)!
. (11.44)
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It is convenient to express this result in terms

of the uncertainty ∆x =
√

~
2mω of position in the

ground state, which is the equivalent of the classi-
cal oscillation amplitude. One then obtains

E0 − E(0)
0 ≈ λ(∆x)n

2−n/2

(n/2)!
, (n even). (11.45)

Note that the numerical coefficient rapidly falls of
with increasing n.

XII. QUANTUM MECHANICS IN THREE DIMENSIONS

A. Coordinates and wavefunction

Three-dimensional space r = xi + yj + zk is
spanned by three basis vectors i, j, k with coor-
dinates x, y and z.

The state of a system is described by a wavefunc-
tion ψ(r) = ψ(x, y, z).

B. Position operators

The coordinates are associated with three posi-
tion operators x̂, ŷ, ẑ which act as

x̂ψ(r) = xψ(r), ŷψ(r) = yψ(r), ẑψ(r) = zψ(r).
(12.1)

These coordinates commute since (x̂ŷ −
ŷx̂)ψ(x, y, z) = xyψ(x, y, z) − yxψ(x, y, z) = 0 etc.
Hence [x̂, ŷ] = 0, [x̂, ẑ] = 0, [ŷ, ẑ] = 0. Therefore, x,
y and z are simultaneous observables (they can
be measured simultaneously without affecting
each other). Indeed, Heisenberg’s uncertainty
relation gives, e.g., ∆x∆y ≥ 0, so that it is possible
to determine both x and y with no uncertainty,
∆x = ∆y = 0.

C. Momentum operators

Momentum p = pxi + pyj + pzk is associated with
momentum operators

p̂x = −i~ ∂

∂x
, p̂y = −i~ ∂

∂y
, p̂z = −i~ ∂

∂z
, (12.2)

which act as

p̂xψ(r) = −i~∂ψ(r)

∂x
, (12.3)

p̂yψ(r) = −i~∂ψ(r)

∂y
, (12.4)

p̂zψ(r) = −i~∂ψ(r)

∂z
. (12.5)

The momentum operators commute with each
other because the order of differentiation does not
matter for any function ψ(r):

∂2ψ(r)

∂x∂y
=
∂2ψ(r)

∂y∂x
. (12.6)

Hence [p̂x, p̂y] = 0, [p̂x, p̂z] = 0, [p̂y, p̂z] = 0.

D. Commutators between position and momentum

From one dimension we already know [x̂, p̂x] = i~.
This also translates to the commutators [ŷ, p̂y] = i~,
[ẑ, p̂z] = i~.

However, the following commutators vanish:
[x̂, p̂y] = 0, [x̂, p̂z] = 0, [ŷ, p̂x] = 0, [ŷ, p̂z] = 0, [ẑ, p̂x] = 0,
[ẑ, p̂y] = 0.

E. Momentum eigenstates

The normalised momentum eigenfunctions in
three dimensions are given by

ψp(r) = (2π~)−3/2 exp(ip · r/~) (12.7)

where p = pxi + pyj + pzk.
They can also be written as

ψp(r) = ψpx(x)ψpy (y)ψpz (z) (12.8)

where ψp(x) = (2π~)−1/2 exp(ipx/~).
Indeed we find

p̂xψp(r) = pxψp(r), (12.9)

p̂yψp(r) = pyψp(r), (12.10)

p̂zψp(r) = pzψp(r). (12.11)

F. Dirac notation

In Dirac notation, we denote states as |ψ〉. In
order to establish the connection to the wave func-
tion ψ(r) in three dimensions, we employ the posi-
tion basis |r〉 with x̂|r〉 = x|r〉 etc, and write

|ψ〉 =

∫∫∫
drψ(r)|r〉. (12.12)

Alternatively, we may use the momentum basis |p〉
with p̂x|p〉 = px|p〉 etc, and write

|ψ〉 =

∫∫∫
dp ψ̃(p)|p〉. (12.13)

As 〈r|p〉 = (2π~)−3/2 exp(ip · r/~), the expansion co-
efficients ψ(r) = 〈r|ψ〉 and ψ̃(p) = 〈p|ψ〉 in both ba-
sis sets are related by a three-dimensional Fourier
transformation,

ψ(r) =

∫∫∫
dp ψ̃(p)〈r|p〉. (12.14)
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G. Schrödinger equation in three dimensions

In three dimensions the Hamiltonian for a point
particle of mass m is given by

Ĥ =
p̂2
x + p̂2

y + p̂2
z

2m
+ V (r̂) = − ~2

2m
∆ + V (r̂) (12.15)

where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace oper-
ator. In position representation, the stationary
Schrödinger equation E|ψ〉 = Ĥ|ψ〉 is given by

Eψ(r) = − ~2

2m
∆ψ(r) + V (r)ψ(r). (12.16)

XIII. THREE-DIMENSIONAL EXAMPLES AND APPLICATIONS

A. Example: free particle in three dimensions

The Hamiltonian of a free particle is given by

Ĥ =
p̂2
x + p̂2

y + p̂2
z

2m
= − ~2

2m
∆, (13.1)

and the associated Schrödinger equation is

Eψ(r) = − ~2

2m
∆ψ(r). (13.2)

The solutions are the momentum eigenstates ψp(r)
given in Eq. (12.7):

Eψp(r) =
p2

2m
ψp(r) (13.3)

where p2 = p2
x + p2

y + p2
z.

B. Separation of variables in cartesian coordinates

In this course we will only consider problems
which can be reduced to one-dimensional sub-
problems. In the simplest case, this reduction
can be carried out in cartesian coordinates: if
V (r) = V1(x) + V2(y) + V3(z) then we can find so-
lutions of the form ψ(r) = X(x)Y (y)Z(z).

Proof: Insert ψ(r) = X(x)Y (y)Z(z) into the
Schrödinger equation:

EX(x)Y (y)Z(z)

=

(
− ~2

2m

∂2

∂x2
X(x) + V1(x)X(x)

)
Y (y)Z(z)

+

(
− ~2

2m

∂2

∂y2
Y (y) + V2(y)Y (y)

)
X(x)Z(z)

+

(
− ~2

2m

∂2

∂z2
Z(z) + V3(z)Z(z)

)
X(x)Y (y). (13.4)

Devide both sides by X(x)Y (y)Z(z):

E =
1

X(x)

(
− ~2

2m

∂2

∂x2
X(x) + V1(x)X(x)

)
+

1

Y (y)

(
− ~2

2m

∂2

∂y2
Y (y) + V2(y)Y (y)

)
+

1

Z(z)

(
− ~2

2m

∂2

∂z2
Z(z) + V3(z)Z(z)

)
.(13.5)

Since the left hand side of this equation is con-
stant and each of the terms on the right hand side
only depends on one of the three variables, each of
those terms has to be constant. This gives three
one-dimensional Schrödinger equations

E1X(x) = − ~2

2m

d2

dx2
X(x) + V1(x)X(x), (13.6)

E2Y (y) = − ~2

2m

d2

dy2
Y (y) + V2(y)Y (y), (13.7)

E3Z(z) = − ~2

2m

d2

dz2
Z(z) + V3(z)Z(z). (13.8)

The total energy is E = E1 + E2 + E3.

C. Example: particle in the box

A three-dimensional box is defined by the poten-
tial V (r) = 0 for 0 < x < L1 and 0 < y < L2 and
0 < z < L3 while V (r) =∞ elsewhere.

This potential can be written in the form V (r) =
V1(x) + V2(y) + V3(z) where

V1(x) = 0 for 0 < x < L1, V1(x) =∞ elsewhere,

V2(y) = 0 for 0 < y < L2, V2(y) =∞ elsewhere,

V3(z) = 0 for 0 < z < L3, V3(z) =∞ elsewhere.

The three equations (13.6,13.7,13.8) are of the
form of one-dimensional particles in the box and
are solved by

X(x) =

√
2

L1
sin

n1πx

L1
, E1 =

n2
1π

2~2

2mL2
1

(13.9)

Y (y) =

√
2

L2
sin

n2πy

L2
, E2 =

n2
2π

2~2

2mL2
2

(13.10)

Z(z) =

√
2

L3
sin

n3πz

L3
, E3 =

n2
3π

2~2

2mL2
3

(13.11)

The total energy is

E = E1 +E2 +E3 =
π2~2

2m

(
n2

1

L2
1

+
n2

2

L2
2

+
n2

3

L2
3

)
. (13.12)

The numbers n1 = 1, 2, 3, . . ., n2 = 1, 2, 3, . . ., n3 =
1, 2, 3, . . . which enumerate the energies are also
called quantum numbers.
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D. Degeneracy

For a symmetric box with L1 = L2 = L3 = L the
energies are

E =
π2~2

2mL2
(n2

1 + n2
2 + n2

3). (13.13)

It is then possible to have degeneracy: Different
sets of quantum numbers (n1, n2, n3) (hence, differ-
ent eigenfunctions) can have the same energy. The
degeneracy factor is generally denoted as g. For ex-
ample: the six combinations (n1, n2, n3) = (1, 2, 3),
(2, 3, 1), (3, 1, 2), (1, 3, 2), (2, 1, 3), (3, 2, 1) all give the
same energy E = 14 π2~2

2mL2 . This is then called a six-
fold degenerate energy level (g = 6).

E. Density of states

For many physical problems (such as thermody-
namics, or transitions in scattering or decay pro-
cesses, to be encountered later in this course), we
need to know the number of states with energies
En ≈ E, without resolving the details of the energy
quantisation. This number can be estimated by
first considering the number of states with energy
En < E,

N(E) =
∑
n

Θ(E − En) (13.14)

[where Θ(x) is the unit step function, with Θ(x) = 0
for x < 0 and Θ(x) = 1 for x > 1], and then smooth-
ing this out over energy to obtain a continuous
function N̄(E) to finally obtain the density of states

ρ(E) = dN̄/dE. (13.15)

This quantity is large in regions where levels are
closely spaced [the level spacing is ∆E = 1/ρ(E)].

For the particle in the three-dimensional box,
we can carry out this program by replacing the
sum over the quantum numbers by an integral
over a continuous three-dimensional vector n =
(n1, n2, n3) (with all components positive), and in-
terpreting E = π2~2|n|2/2mL2 as a continuous
function of this vector. In the space of n, the al-
lowed states populate a volume

N(E) =
1

8

4π

3
|n|3 =

(2m)3/2L3

6π2~3
E3/2, (13.16)

and the density of states becomes

ρ(E) =
(2m)3/2L3

4π2~3
E1/2. (13.17)

Since this expression is proportional to the volume
of the box, it is advantageous to introduce the local
density of states

ν(E) = ρ(E)/L3 =
(2m)3/2

4π2~3
E1/2. (13.18)

Analogously, in two dimensions one obtains

ν(E) =
m

2π~2
(13.19)

(i.e., a constant), while in one dimension

ν(E) =
1

2π~

√
2m

E
. (13.20)

To a very good approximation, these expressions
also apply to charge carriers in metals or semi-
conductors, if one only replaces the mass m by
a suitable effective mass m∗ which accounts for
the forces from the ionic background in the ma-
terial. E.g., in GaAs, m∗ ≈ 0.067me for electron-like
carriers, where me the electron mass. Such ma-
terials allow to realize particle boxes of various di-
mensions (quantum wells, nanowires, and quan-
tum dots) by suitable position-dependent doping
and gating. Furthermore, since electrons carry an
additional degree of freedom called spin (which we
discuss in section XVI), the density of state has to
be multiplied by a factor of two.

For massless particles like photons, the density
of states can be constructed analogously by using
the dispersion relation E = ~ω = ~ck. In three di-
mensions, accounting for the two polarisation di-
rections of the photon we then obtain the local
density of states

ν(E) =
E2

π2~3c3
(13.21)

(as we will discuss later, each of these states
can carry multiple photons). A related exam-
ple is graphene, a two-dimensional sheet of car-
bon atoms, where electrons have dispersion re-
lation E = ~vF |k| with constant Fermi velocity
vF ∼ 106m/s. Accounting for all internal degrees
of freedom (spin and pseudospin), the local density
of states in this material is ν(E) = 2|E|/(π~2v2

F ).

F. Example: harmonic oscillator

1. Revision of the one-dimensional harmonic oscillator

In one dimension, the Schrödinger equation

Eψ(x) = − ~2

2m

d2ψ(x)

dx2
+

1

2
mω2x2ψ(x), (13.22)
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of the harmonic oscillator is solved by

En = ~ω(n+ 1/2), (13.23)

ψn(x) =

√
α

π1/22nn!
Hn(αx)e−α

2x2/2 (13.24)

where α =
√

mω
~ and the first Hermite polynomials

are H0(s) = 1, H1(s) = 2s, H2(s) = 4s2 − 2.

2. The three-dimensional harmonic oscillator

The three-dimensional oscillator has potential
energy

V (r) = V1(x) + V2(y) + V3(z), (13.25)

V1(x) =
1

2
mω2

1x
2, (13.26)

V2(y) =
1

2
mω2

2y
2, (13.27)

V3(z) =
1

2
mω2

3z
2. (13.28)

Hence the three equations (13.6,13.7,13.8) are of
the form of three one-dimensional harmonic oscil-
lators

E1X(x) = − ~2

2m

d2

dx2
X(x) +

1

2
mω2

1x
2X(x), (13.29)

E2Y (y) = − ~2

2m

d2

dy2
Y (y) +

1

2
mω2

2y
2Y (y), (13.30)

E3Z(z) = − ~2

2m

d2

dz2
Z(z) +

1

2
mω2

3z
2Z(z). (13.31)

and are solved by

X(x) =

√
α1

π1/22n1n1!
Hn1(α1x)e−α

2
1x

2/2, (13.32)

Y (y) =

√
α2

π1/22n2n2!
Hn2(α2y)e−α

2
2y

2/2, (13.33)

Z(z) =

√
α3

π1/22n3n3!
Hn3(α3z)e

−α2
3z

2/2. (13.34)

where αi =
√

mωi

~ . The individual energies are Ei =
~ωi(ni + 1/2) and the total energy is

E = ~ω1(n1+
1

2
)+~ω2(n2+

1

2
)+~ω3(n3+

1

2
), ni = 0, 1, 2, . . .

(13.35)

3. Degeneracy and density of states of the isotropic
oscillator

When all three frequencies ω1 = ω2 = ω3 = ω
are identical then the potential V (r) = 1

2mω
2|r|2 de-

pends only on the radial distance from the origin,

hence it is spherical symmetric. This is called the
isotropic harmonic oscillator (isotropic means in-
dependent of the direction). The energy levels are
now given by E = ~ω(n1 +n2 +n3 + 3/2). Hence, dif-
ferent states with the same sum of quantum num-
bers n1 + n2 + n3 have the same energy. Therefore,
each level with energy En = ~ω(n + 3/2) has de-
generacy gn = (n + 1)(n + 2)/2. It follows that the
(smoothed) number of states with energy less than
E is given by N̄(E) = E3/6(~ω)3, and the density
of states is ρ(E) = E2/2(~ω)3. (In two dimensions,
ρ(E) = E/~2ω2, and in one dimension ρ(E) = 1/~ω,
where the latter is a constant in accordance with
the constant level spacing ∆E = ~ω.)

XIV. CENTRAL POTENTIALS

The isotropic harmonic oscillator is an exam-
ple of a spherical symmetric potential, where the
potential energy only depends on the radial dis-
tance from the origin, r = |r|. These potentials are
called central potentials. Another example is the
Coulomb potential

Vc =
q1q2

4πε0r
(14.1)

of two charges q1 and q2. For central potentials the
Schrödinger equation

Eψ(r) = − ~2

2µ
∆ψ(r) + V (r)ψ(r) (14.2)

can also be separated in three one-dimensional
problems, but only when one works in spherical
polar coordinates. Note: Here mass is denoted by
the symbol µ since we need m later for a different
purpose.

A. Spherical polar coordinates

The three spherical coordinates are the radial co-
ordinate r =

√
x2 + y2 + z2, the azimuthal angle

φ = arctan(y/x), and the polar angle θ = arccos(z/r).
The cartesian coordinates can be written as

x = r sin θ cosφ, (14.3)

y = r sin θ sinφ, (14.4)

z = r cos θ. (14.5)

The Laplace operator is given by

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

(14.6)
We abbreviate the angular part as

∆θ,φ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (14.7)
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z
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rθ

φ

x

FIG. 1 Spherical polar coordinates.

B. Separation of variables in spherical polar coordinates

We separate the radial dependence from the an-
gular dependence in the wavefunction, ψ(x, y, z) =
R(r)Y (θ, φ). From the Schrödinger equation (14.2)
one finds that the angular part solves the equation
∆θ,φY = −l(l + 1)Y , i.e.,

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
= −l(l + 1)Y, (14.8)

while the radial part solves the equation

− ~2

2µr2

d

dr

(
r2 dR

dr

)
+

(
V (r) +

~2l(l + 1)

2µr2

)
R = ER,

(14.9)
where l is a constant.

C. Angular part

Since Eq. (14.8) for the angular part does not de-
pend on the potential V (r) we can solve this equa-
tion once and for all. The solutions are the spheri-
cal harmonics

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ,

(14.10)
for m ≥ 0, Yl,−m(θ, φ) = (−1)mY ∗l,m(θ, φ) for m < 0.

Here l = 0, 1, 2, 3, . . . is called the azimuthal quan-
tum number and m = 0,±1,±2, . . . ,±l is called the
magnetic quantum number. Note that for each l
there are 2l + 1 values of m.

For m = 0 the functions Pml (s) are the Legendre
polynomials

P 0
l (s) =

1

2ll!

dl

dsl
(s2 − 1)l, l = 0, 1, 2, 3, . . . . (14.11)

Hence

P 0
0 (s) = 1, (14.12)

P 0
1 (s) = s, (14.13)

P 0
2 (s) = (3s2 − 1)/2, (14.14)

P 0
3 (s) = (5s3 − 3s)/2. (14.15)

For m 6= 0 the functions Pml (s) are the associated
Legendre polynomials

Pml (s) = P−ml (s) = (1− s2)|m|/2
d|m|

ds|m|
P 0
l (s). (14.16)

The first spherical harmonics are

Y00(θ, φ) =

√
1

4π
for l = 0, m = 0, (14.17)

Y10(θ, φ) =

√
3

4π
cos θ for l = 1, m = 0, (14.18)

Y1,±1(θ, φ) = ∓
√

3

8π
sin θe±iφ for l = 1, m = ±1,

(14.19)

Y20(θ, φ) =

√
5

16π
(3 cos2 θ − 1), (14.20)

Y2,±1(θ, φ) = ∓
√

15

8π
sin θ cos θe±iφ, (14.21)

Y2,±2(θ, φ) = ∓
√

15

32π
sin2 θe±2iφ, (14.22)

D. Quantisation of angular momentum

The angular momentum operator is given by L̂ =
r̂× p̂, hence L̂x = ŷp̂z − ẑp̂y etc. The squared length
is given by L̂2 = L̂2

x + L̂2
y + L̂2

z. One can show that

L̂2Ylm(θ, φ) = ~2l(l + 1)Ylm, (14.23)

L̂zYlm(θ, φ) = ~mYlm. (14.24)

Hence the spherical harmonics are eigenfunctions
of L̂2 and L̂z, with eigenvalues ~2l(l + 1) and ~m,
respectively.

E. Degeneracy of the radial part

Equation (14.9) for the radial part R(r) depends
on the potential and hence has to be solved sep-
arately for every problem in order to find the en-
ergies E. However, since this equation only de-
pends on the azimuthal quantum number l but not
on the magnetic quantum number m, each energy
level is at least 2l+1 fold degenerate, since for each
l there are 2l+ 1 solutions Ylm of the angular equa-
tion with different values of m.
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XV. ANGULAR MOMENTUM

A. Classical angular momentum and magnetic moment

Classical angular momentum is given by

L = r× p = (ypz − zpy)i + (zpx − xpz)j + (xpy − ypx)k.
(15.1)

L

r v
me 

|L|=(me v)r=meωr2

FIG. 2 Illustration of classical angular momentum.

B. Angular momentum operators

The angular momentum operator L̂ = r̂ × p̂ has
components

L̂x = ŷp̂z − ẑp̂y = −i~(y
∂

∂z
− z ∂

∂y
), (15.2)

L̂y = ẑp̂x − x̂p̂z = −i~(z
∂

∂x
− x ∂

∂z
), (15.3)

L̂z = x̂p̂y − ŷp̂x = −i~(x
∂

∂y
− y ∂

∂x
). (15.4)

Total angular momentum is given by

L̂2 = L̂2
x + L̂2

y + L̂2
z = −~2∆θ,φ. (15.5)

The commutation relations are

[L̂x, L̂y] = i~L̂z, [L̂y, L̂z] = i~L̂x, [L̂z, L̂x] = i~L̂y,
(15.6)

[L̂x, L̂
2] = 0, [L̂y, L̂

2] = 0, [L̂z, L̂
2] = 0. (15.7)

Heisenberg’s uncertainty principle dictates that it
is not possible to know two components of angular
momentum at the same time (since their commu-
tator does not vanish). However, it is possible to
determine one of the components (say Lz) simul-
taneously with the total angular momentum, since
[L̂z, L̂

2] = 0.

C. Angular momentum eigenfunctions

We already determined that the spherical har-
monics Ylm are joint eigenfunctions of L̂2 and L̂z,

L̂2Ylm(θ, φ) = ~2l(l + 1)Ylm, (15.8)

L̂zYlm(θ, φ) = ~mYlm. (15.9)

The eigenvalues are ~2l(l+ 1) and ~m, respectively.
E.g., for l = 2 the length of the angular momentum
vector is |L| =

√
6~ and there are 5 possible values

values of Lz, as is illustrated in the following figure.

Lz

component in 
xy plane
is unknown

m=2

m=1

m=0

m=−2

m=−1

2h-
|L|=√

—
6h-

h-

0

−2h-
−h-

FIG. 3 Angular momentum quantisation.

D. Angular momentum in Dirac notation

Instead of interpreting the angular Schrödinger
equation as a differential equation, this equation
can be solved very efficiently by employing the per-
spective of operators and vectors.

In Dirac notation, the eigenstates of the L̂z and
L̂2 are denoted as |lm〉, such that

L̂z|lm〉 = ~m|lm〉, L̂2|lm〉 = ~2l(l + 1)|lm〉. (15.10)

We now introduce the ladder operators L̂± =
L̂x ± iL̂y, which are non-hermitian and related by
L̂†+ = L̂−. These operators fulfill the commutation
relation

[L̂z, L̂±] = [L̂z, L̂x]± i[L̂z, L̂y] = i~L̂y ± ~Lx = ±~L±.
(15.11)

The utility of these operators arises from the fact
that they relate the eigenstates |lm〉 of fixed l but
different m in a systematic way. Indeed, the follow-
ing calculation shows that L̂±|lm〉 is still an eigen-
state of Lz,

L̂z(L̂±|lm〉) = L̂±L̂z|lm〉+[L̂z, L̂±]|lm〉 = ~(m±1)L̂±|lm〉,
(15.12)
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with eigenvalue ~(m ± 1). Furthermore, because
[L̂2, L̂±] = 0 this state is also an eigenstate of L̂2,
with eigenvalue ~2l(l + 1). Thus,

L̂±|l,m〉 = c±lm|l,m± 1〉, (15.13)

where the normalisation constants work out as

c+lm = ~
√

(l −m)(l +m+ 1), c−lm = c+l,−m. (15.14)

Since c+ll = 0, the state |ll〉 is determined by the
condition

L̂+|ll〉 = |0〉, (15.15)

while all other states follow by repeated application
of L̂−.

This construction of the angular momentum
eigenstates and determination of their eigenvalues
is purely algebraic, and sidesteps any explicit ref-
erence to spherical harmonics. Their explicit form
can be recovered by writing 〈θ, φ|lm〉 = Ylm(θ, φ),
where |θ, φ〉 denotes position basis states on the
unit sphere, parameterised in spherical polar co-
ordinates. Yll is then obtained from Eq. (15.15),
where L̂+ is expressed as the associated differen-
tial operator, and the other spherical harmonics
follow by successive application of the differential
operator associated with L̂−.

E. Magnetic moment

The orbital motion of an electron with angular
momentum L gives rise to a magnetic moment

m = − e

2me
L. (15.16)

When a magnetic field B is applied, this gives rise
to an interaction energy

VB = −m ·B, (15.17)

which can be used to measure the angular mo-
mentum. We assume that the magnetic field is ap-
plied in z direction, B = Bzk, therefore

VB =
eBz
2me

Lz. (15.18)

Quantum mechanically the interaction energy is
represented by the operator

V̂B =
eBz
2me

L̂z. (15.19)

In a central potential a magnetic field hence lifts
the 2l+ 1 fold degeneracy of the angular part of the

L

m

B
me , −e

FIG. 4 Magnetic moment.

wavefunction: For each value of m, the energies of
the orbitals are shifted by an amount

δEm = µBBzm, (15.20)

which depends on the magnetic quantum number
m (hence the name). Here µB = e~

2me
is the so-called

Bohr magneton.

XVI. SPIN

The electron also has an intrinsic angular mo-
mentum Ŝ, independently of its orbital angular
momentum L̂. This intrinsic angular momentum
is called spin (the name suggests that the electron
performs a rotation around itself, which is, how-
ever, actually not the case).

L
S

FIG. 5 Spin.

A. Stern-Gerlach experiment

The spin was discovered in the Stern-Gerlach ex-
periment in 1922. In this experiment, silver atoms
are heated in an oven, from which they escape
through a tiny hole. They travel into x direction
and enter an apparatus where they pass through
an inhomogeneous magnetic field B = bzk. This
field points into z direction and has a finite gra-
dient ∂Bz/∂z = b. If the atoms carry a magnetic
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FIG. 6 Set-up of the Stern-Gerlach experiment.

moment m this gives rise to a force

Fz = −∂VB
∂z

= mzb (16.1)

which deflects the atoms into z direction. In the
experiment it is observed that the atoms arrive on
the screen at two spots, only. This is not what
is classically expected, but also incompatible with
quantisation of the orbital angular momentum L,
which always yields an odd number 2l+ 1 of possi-
ble values of Fz since l is an integer. However, the
experiment can be fully explained by introducing
an intrinsic magnetic moment

m̂ = − e

me
Ŝ, (16.2)

where Ŝ has the properties of angular momentum,
but with l = ls = 1/2 not an integer. Since the spin
magnetic quantum number is restricted to ms =
−ls,−ls + 1, . . . , ls this allows only two values ms =
± 1

2 , hence

Sz =
~
2

or Sz = −~
2
. (16.3)

Given the force from Eq. (16.1) it can be deduced
that the observed locations of the arriving atoms
indeed correspond to these two values.

B. Spinor

The spin state of the electron is described by a
two-component vector (called spinor)

ψ =

(
ψ↑
ψ↓

)
(16.4)

where

|ψ↑|2 = probability that Sz = ~/2 (‘spin up’), (16.5)

|ψ↓|2 = probability that Sz = −~/2 (‘spin down’).(16.6)

Hence ψ =
(

1
0

)
describes an electron with spin up

and ψ =
(

0
1

)
describes an electron with spin down.

The scalar product of spinors is given by (see the
mathematical appendix)

〈ψ|ϕ〉 = ψ∗↑ϕ↑ + ψ∗↓ϕ↓. (16.7)

Normalisation of the probability requires |ψ↑|2 +
|ψ↓|2 = 1, hence 〈ψ|ψ〉 = 1.

C. Spin operators

The spin operator Ŝ = Ŝxi + Ŝyj + Ŝzk consists of
the three spin matrices

Ŝx =
~
2

(
0 1
1 0

)
, (16.8)

Ŝy =
~
2

(
0 −i
i 0

)
, (16.9)

Ŝz =
~
2

(
1 0
0 −1

)
. (16.10)

The three matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(16.11)

are called Pauli matrices.
Matrix multiplication (see the mathematical ap-

pendix) gives

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

3

4
~2

(
1 0
0 1

)
. (16.12)

The commutation relations also follow from matrix
multiplication,

[Ŝx, Ŝy] = i~Ŝz, [Ŝy, Ŝz] = i~Ŝx, [Ŝz, Ŝx] = i~Ŝy,
(16.13)

[Ŝx, Ŝ
2] = 0, [Ŝy, Ŝ

2] = 0, [Ŝz, Ŝ
2] = 0. (16.14)

This is identical to the commutation relations of
angular momentum, see Eqs. (15.6) and (15.7).

D. Eigenvalues and eigenvectors of Ŝ2 and Ŝz

Since

Ŝ2

(
ψ↑
ψ↓

)
=

3

4
~2

(
1 0
0 1

)(
ψ↑
ψ↓

)
=

3

4
~2

(
ψ↑
ψ↓

)
, (16.15)

all vectors are eigenvectors Ŝ2. The eigenvalue 3
4~

2

corresponds to angular momentum with l = ls =
1/2, see Eq. (15.8).

Since

Ŝz

(
ψ↑
ψ↓

)
=

~
2

(
1 0
0 −1

)(
ψ↑
ψ↓

)
=

~
2

(
ψ↑
−ψ↓

)
, (16.16)
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the normalised eigenvectors of Ŝz are ψ =
(

1
0

)
(with eigenvalue ~/2) and ψ =

(
0
1

)
(with eigenvalue

−~/2). This again corresponds to angular momen-
tum with l = ls = 1/2, see Eq. (15.9).

Sz

component in 
xy plane
is unknown

mS=1/2

mS=−1/2

h- /2

|S|=√
—
3h- /2

0

−h- /2

FIG. 7 Quantisation of spin.

E. Eigenvalues and eigenvectors of Ŝx and Ŝy

Ŝx

(
ψ↑
ψ↓

)
=

~
2

(
0 1
1 0

)(
ψ↑
ψ↓

)
=

~
2

(
ψ↓
ψ↑

)
. (16.17)

Hence the normalised eigenvectors of Ŝx are ψ =
1√
2

(
1
1

)
(with eigenvalue ~/2) and ψ = 1√

2

(
1
−1

)
(with

eigenvalue −~/2).

Ŝy

(
ψ↑
ψ↓

)
=

~
2

(
0 −i
i 0

)(
ψ↑
ψ↓

)
=

~
2

(
−iψ↓
iψ↑

)
. (16.18)

Hence the normalised eigenvectors of Ŝy are ψ =
1√
2

(
1
i

)
(with eigenvalue ~/2) and ψ = 1√

2

(
1
−i
)

(with
eigenvalue −~/2).

F. Expectation values

The expectation value of Sz is given by

〈Ŝz〉 = 〈ψ|Ŝzψ〉

=
~
2

(ψ∗↑ , ψ
∗
↓)

(
1 0
0 −1

)(
ψ↑
ψ↓

)
=

~
2

(ψ∗↑ , ψ
∗
↓)

(
ψ↑
−ψ↓

)
=

~
2

(|ψ↑|2 − |ψ↓|2), (16.19)

Note that

P (Sz = ~/2) = |ψ↑|2, (16.20)

P (Sz = −~/2) = |ψ↓|2. (16.21)

are the probabilities for spin up and down, respec-
tively.

By similar calculations,

〈Ŝx〉 = ~Reψ∗↑ψ↓, (16.22)

〈Ŝy〉 = ~ Imψ∗↑ψ↓, (16.23)

where Re denotes the real part and Im denotes the
imaginary part of the complex number ψ∗↑ψ↓.

The probabilities for spin measurements in x or
y directions are given by

P (Sx = ~/2) =
1

2
|ψ↑ + ψ↓|2, (16.24)

P (Sx = −~/2) =
1

2
|ψ↑ − ψ↓|2, (16.25)

and

P (Sy = ~/2) =
1

2
|ψ↑ − iψ↓|2, (16.26)

P (Sy = −~/2) =
1

2
|ψ↓ − iψ↑|2, (16.27)

respectively.

G. Polarisation vector and Bloch sphere

A convenient alternative way to represent a
spinor state is given by the 3-dimensional real po-
larisation vector

~P = (〈σx〉, 〈σy〉, 〈σz〉) (16.28)

= (2 Reψ∗↑ψ↓, 2 Imψ∗↑ψ↓, |ψ↑|2 − |ψ↓|2).(16.29)

If ψ is normalised then the polarisation vector is of
unit length, i.e., it is restricted to the surface of a
sphere, the so-called Bloch sphere.

H. Stationary Schrödinger equation

The most general stationary Hamiltonian for a
spin is a hermitian 2×2-dimensional matrix. Such
a matrix can always be written as

H = a0I + axσx + ayσy + azσz (16.30)

where a0, ax, ay, and az are real constants, and

I =

(
1 0
0 1

)
(16.31)

is the 2 × 2-dimensional identity matrix. The sta-
tionary Schrödinger equation Eψ = Hψ is solved
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by the eigenvectors of H. These can be found by
writing the vector a = (ax, ay, az) = an, where n is a
unit vector and a = |a|. The eigenvectors can then
be written as

ψ+ =
1√

2(1 + nz)

(
1 + nz
nx + iny

)
, (16.32)

ψ− =
1√

2(1 + nz)

(
−nx + iny

1 + nz

)
. (16.33)

On the Bloch sphere, these eigenvectors corre-
spond to the polarisation vectors

~P± = ±n. (16.34)

The corresponding eigenvalues

E± = a0 ± a (16.35)

determine the energy of these states.

I. Spin in Dirac notation

In order to describe spin in the Dirac notation,
we introduce the normalised and mutually orthog-
onal states |↑〉 for “spin up” and |↓〉 for “spin down”,
with

Ŝz|↑〉 =
~
2
|↑〉, Ŝz|↓〉 = −~

2
|↓〉. (16.36)

Accordingly, we can write

Ŝz =
~
2
|↑〉〈↑| − ~

2
|↓〉〈↓|. (16.37)

The other spin components are then given by the
operators

Ŝx =
~
2
|↑〉〈↓|+ ~

2
|↓〉〈↑|, Ŝy = −i~

2
|↑〉〈↓|+ i

~
2
|↓〉〈↑|,
(16.38)

and the total spin is given as

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

3~2

4
(|↑〉〈↑|+ |↓〉〈↓|). (16.39)

The eigenstates of Ŝx are | ± x〉 =
√

1/2(|↑〉 ± |↓〉),
while those of Ŝy are | ± y〉 =

√
1/2(|↑〉 ± i|↓〉); the

associated eigenvalues are ±~/2. All the expres-
sions for expectation values and probabilities given
above can now be seen as special incarnations of
our general rules for quantum mechanics, evalu-
ated in the basis |↑〉, |↓〉.

In analogy to orbital angular momentum, we can
also introduce the ladder operators

Ŝ+ = Ŝx + iSy = |↑〉〈↓|, Ŝ− = Ŝx − iSy = |↓〉〈↑|,
(16.40)

which are again non-hermitian and related by
Ŝ†+ = Ŝ−. These now convert or annihilate spin
eigenstates, according to

Ŝ+|↓〉 = |↑〉, Ŝ+|↑〉 = |0〉, Ŝ−|↑〉 = |↓〉, Ŝ−|↓〉 = |0〉.
(16.41)

J. Mathematical appendix: two-dimensional linear
algebra

1. Vectors and matrices

A vector v in two dimensions is given by two
numbers v1 and v2, called components,

v =

(
v1

v2

)
. (16.42)

Matrices A, B etc are given by four numbers, such
as

A =

(
a11 a12

a21 a22

)
, (16.43)

B =

(
b11 b12

b21 b22

)
. (16.44)

We consider the case that the matrix and vector
components can be complex numbers.

2. Addition of vectors and matrices

Vectors and matrices are added element by ele-
ment,

v + w =

(
v1 + w1

v2 + w2

)
, (16.45)

A+B =

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
. (16.46)

3. Scalar product

The scalar product

〈v|w〉 = v∗1w1 + v∗2w2 (16.47)

can also be written as the product

〈v|w〉 = v†w, (16.48)

where v† = (v∗1 , v
∗
2) denotes the hermitian conju-

gate.
A vector is said to be normalised when 〈v|v〉 = 1.
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4. Multiplication of a vector and a matrix

When a vector v is multiplied by a matrix A, the
result is a new vector Av with components

Av =

(
a11v1 + a12v2

a21v1 + a22v2

)
. (16.49)

One can also multiply two matrices A and B, which
results in another matrix

AB =

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
. (16.50)

Note that this is different from element-by-element
multiplication.

5. Eigenvalues and eigenvectors

Given is a matrix A. The eigenvalue equation

Av = λv (16.51)

requires to find vectors v such that the matrix mul-
tiplication only changes the length of the vector
(multiplication by the constant λ), but not its di-
rection. The number λ is called eigenvalue. In
general, the eigenvalues are found from the equa-
tion det(A − λ) = 0, where det is the determinant,
det = b11b22 − b12b21. This gives the two solutions

λ± =
a11 + a22

2
±
√
a12a21 +

1

4
(a11 − a22)2. (16.52)

The corresponding eigenvectors can be written as

v± =

(
a12

λ± − a11

)
. (16.53)

6. Revision Quiz

For

v =

(
3

2i

)
, w =

(
2

−i

)
, A =

(
1 i
−i 1

)
, B =

(
1 i
2 2

)
,

calculate
(i) v + w,
(ii) 2v + 3iw,
(iii) 〈v|v〉,
(iv) 〈v|w〉,
(v) Av,
(vi) Bw,
(vii) the eigenvalues and eigenvectors of A.

XVII. HYDROGEN ATOM

The Hydrogen atom consists of an electron of
mass me and negative charge −e, and a nucleus,
which is a proton of positive charge e and mass
mp ≈ 1836me. The total Hamiltonian of electron
and proton is given by

Ĥ =
p̂2
p

2mp
+

p̂2
e

2me
− e2

4πε0|re − rp|
, (17.1)

where the potential energy is the Coulomb energy
of the two attracting charges.

A. Separation of relative and centre-of-mass motion

We introduce the centre-of-mass coordinate R =
mere+mprp
me+mp

and the relative coordinate r = re − rp.
The Hamiltonian then takes the form

Ĥ =
P̂2

2M
+

p̂2

2µ
− e2

4πε0|r|
, (17.2)

where P̂ = p̂p + p̂e is the total momentum, M =

me + mp is the total mass, p̂ =
mepe−mppp

me+mp
is the

momentum of the relative motion, and µ =
memp

me+mp

is the reduced mass. Since me � mp, µ ≈ me. We
consider the atom at rest, P = 0. Then we have to
solve the Schrödinger equation

Eψ(r) = − ~2

2µ
∆ψ(r)− e2

4πε0r
ψ(r). (17.3)

B. Separation of radial and angular motion

The Coulomb potential only depends on r and
hence is a central potential. Therefore, the solu-
tions of the Schrödinger equation are of the form

ψnml(r) = Rn(r)Ylm(θ, φ), (17.4)

where Ylm(θ, φ) are the spherical harmonics of Eq.
(14.10).

C. Radial motion

The radial equation (14.9) now takes the form

− ~2

2µr2

d

dr

(
r2 dR

dr

)
+

(
~2l(l + 1)

2µr2
− e2

4πε0r

)
R = ER(r).

(17.5)
We introduce the rescaled radial coordinate

ρ =

√
−8µE

~2
r (17.6)



36

and the new parameter

n =

√
−µ
2E

e2

4πε0~
(17.7)

and look for solutions R(r) = F (ρ)e−ρ/2. Equation
(17.5) then takes the form

d2F

dρ2
+

(
2

ρ
− 1

)
dF

dρ
+

(
n− 1

ρ
− l(l + 1)

ρ2

)
F = 0.

(17.8)
This equation is known as Kummer’s differential
equation. For integer values n = l+ 1, l+ 2, l+ 3, . . .,
the solutions are given by Fn,l(ρ) = ρlL2l+1

n−l−1(ρ),
where Lks(ρ) are the Laguerre polynomials:

L0
s(ρ) = eρ

ds

dρs
(e−ρρs), Lks(ρ) = (−1)k

dk

dρk
L0
s+k(ρ).

(17.9)

D. Energies

Since n =
√
−µ
2E

e2

4πε0~ the energy levels of the Hy-
drogen atom only depend on the principal quantum
number n but not on l or m:

En = −µ
2

(
e2

4πε0~

)2
1

n2
. (17.10)

The energies can also be written as En = −Ry 1
n2

where Ry= e2

8πε0a0
= 13.6 eV is the so-called Rydberg

energy and a0 = 4πε0~2

µe2 ≈ 0.53× 10−10m is called the
Bohr radius.

The lowest energy level has energy E1 = −Ry =
−13.6 eV. For energy E > 0, the electrons are not
bound to the nucleus. Hence the Rydberg energy is
the amount of energy required to release the elec-
tron from the nucleus (this process is called ioni-
sation).

E. Spectral lines

The electron can change from one energy level n
to another level n′ if it absorbs or emits a photon
which carries the right amount of energy ~ω = En−
En′ . This gives rise to discrete spectral lines. The
most important lines are grouped into series, such
as the Lyman series (n′ = 1), the Balmer series
(n′ = 2), and the Paschen series (n′ = 3).

F. Degeneracy

For each n the allowed values of l are
0, 1, 2, . . . , n − 1, and for each l there are 2l + 1 al-
lowed values of m. Hence, the degeneracy of each

E

hydrogen atom

negative potential

bound states: E ∝ − 1–n 2

harmonic
oscillator

pos. potential

E ∝ n + 1–
2

square well

pos. potential

E ∝ n2

infinitely many
bound states
(closely spaced)

E

continuum of
extended states

n=1 n=0

n=1

n=2

n=3

n=4

n=5

n=6
E

n=1

n=2

n=3

n=4

n=5

n=2

n=3

E=0

0 0

FIG. 8 Comparison of energy levels in three quantum
systems.

energy level En is
∑n−1
l=1 (2l + 1) = n2. Later we will

learn that the electron has an intrinsic degree of
freedom called spin so that the degeneracy of each
energy level is really 2n2. On the other hand we ne-
glected small perturbations which lift the degener-
acy and result in a fine structure of the energy lev-
els. They will be discussed in the third year module
PHYS321, Atomic & Nuclear Physics.

G. Atomic orbitals

The wavefunctions

ψnlm(r) = cnlYlm(θ, φ)L2l+1
n−l−1(2r/(na0))rle−r/(na0)

(17.11)
of the hydrogen atom are also called atomic or-
bitals. They are normalised for
cnl = (2/(na0))l+3/2

√
(n− l − 1)!/[2n(n+ l)!]. The az-

imuthal quantum number is denoted by a symbol
s for l = 0, p for l = 1, d for l = 2, and f for l = 3.
These symbols are then preceded by the principal
wavenumber n, so that orbitals are denoted by 1s,
2s, 2p, 3s, 3p, 3d etc.
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n=1

n=2

n=3

n=4
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n=6
n=7
n=∞
E

Lyman series
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Brackett
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FIG. 9 Spectral series of the hydrogen atom.

1. Ground state

The ground state is associated with the spheri-
cally symmetric orbital 1s with energy E1 = −Ry,

ψ100(r) =

√
1

πa3
0

e−r/a0 . (17.12)

The probability density to find the particle in a
shell of width dr at distance r is given by

P (r) = 4πr2|ψ100(r)|2 =
4r2

a3
0

e−2r/a0 . (17.13)

This probability density is maximal at r = a0.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6

P(
r/a

0)

r/a0

FIG. 10 Radial probability density in the ground state of
the hydrogen atom (in units of the Bohr radius a0).

2. First excited state

The first excited state has energy E2 = −Ry/4
and is fourfold degenerate. It consists of the one
2s orbital and three 2p orbitals. The 2s orbital
(l = 0, m = 0) is spherical symmetric,

ψ200(r) =

√
1

8πa3
0

(
1− r

2a0

)
e−r/(2a0). (17.14)

The 2p orbitals are not spherical symmetric,

ψ210(r) =

√
1

32πa3
0

r

a0
cos θe−r/(2a0), (17.15)

ψ21,±1(r) = ±

√
1

64πa3
0

r

a0
sin θe−r/(2a0)±iφ.(17.16)

3. Second excited state

The second excited state has energy E3 = −Ry/9
and is nine-fold degenerate. It consists of one 3s
orbital, three 3p orbitals and five 3d orbitals.

4. Pictures of atomic orbitals

Figure 11 depicts surfaces of constant probabil-
ity density for the lowest orbitals of the hydrogen
atom.

1s 2s

3s

2p

3p 3d

FIG. 11 Equiprobability surfaces of hydrogen orbitals.

H. Application: The Zeeman effect

We consider the hydrogen atom in a constant
magnetic field B = Bzk, which points into the z
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direction. The total magnetic moment of the elec-
tron is [see Eqs. (15.16) and (16.2)]

m̂ = − e

2me
(L̂ + 2Ŝ). (17.17)

The interaction energy of the magnetic moment
with the magnetic field is

V̂B = −B · m̂ =
eBz
2me

(L̂z + 2Ŝz). (17.18)

The total Hamiltonian is given by

Ĥ =
p̂2

2µ
− e2

4πε0|r|
+ V̂B . (17.19)

The Schrödinger equation Eψ = Hψ is solved by

ψnml↑ = ψnml(r)

(
1

0

)
, (ms = 1/2) (17.20)

ψnml↓ = ψnml(r)

(
0

1

)
, (ms = −1/2). (17.21)

where ψnml(r) are the orbital wavefunctions of the
hydrogen atom. These functions are eigenfunc-
tions of V̂B:

V̂Bψnml,ms
(r) = (m+ 2ms)µBBzψnml,ms

(r), (17.22)

where µB = e~/2me is the Bohr magneton. How-
ever, the degeneracy of the eigenvalues is now
lifted,

Enml = − e2

8πε0a0

1

n2
+ (m+ 2ms)µBBz. (17.23)

The splitting of the levels depends linearly on the
strength Bz of the magnetic field.

splitting of orbital energies

splitting due to spin

lS=1/2

l=1 m=0
m=1

m=−1

mS=1/2

mS=−1/2

μBB

2μBB

FIG. 12 Level splitting due to Zeeman energy.

The splitting of the orbital energies can be ob-
served in the spectral lines of the hydrogen atom.
This is called the Zeeman effect. The observable

spectral lines is restricted by selection rules: m can
only change by −1, 0, or 1, because of properties of
the emitted photons. Since ms cannot change, the
spin splitting is not observed in the normal Zee-
man effect.

no magnetic field

emission spectrum

finite magnetic field

l=1

l=2 m=0
m=1
m=2

m=−1

m=0
m=1

m=−1

m=−2

ΔE(0)

ΔE(0)

 ΔE(0) ΔE(0)+μBB

ΔE(0)

+μBB

ΔE(0)−μBB

ΔE(0)

−μBB

ΔE(0)

μBB

Δm=1 Δm=−1Δm=0
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FIG. 13 Normal Zeeman effect.
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XVIII. DYNAMICS FOR STATIONARY HAMILTONIANS

According to the postulates of quantum mechan-
ics, the dynamics of a quantum system is encoded
in a quantum state Ψ(t) whose time-dependence is
determined by the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉. (18.1)

So far in this course we considered quantum sys-
tems with time-independent Hamiltonian Ĥ, for
which we could use the method of separation of
variables to reduce the problem to the stationary
Schrödinger equation

En|ψn〉 = Ĥ|ψn〉, (18.2)

i.e., we determined the eigenstates |ψn〉 and eigen-
values En of Ĥ. In this chapter, we first recon-
struct the full time dynamics for such stationary
problems, and discuss the ensuing dynamics for
some examples.

A. General solution via eigenstates

The derivation of the stationary Schrödinger
equation for time-independent Hamiltonians Ĥ is
based on the trial solution

|Ψn(t)〉 = exp(−iEnt/~)|ψn〉. (18.3)

We insert this into the time-dependent Schrödinger
equation (18.1), which gives

En|ψn〉 exp(−iEnt/~) = Ĥ|ψn〉 exp(−iEnt/~). (18.4)

The common factor exp(−iEnt/~) on both sides
never vanishes, and thus can be divided out; what
remains is the stationary Schrödinger equation
(18.2).

In order to obtain a general solution of the time-
dependent Schrödinger equation (18.1) we should
note that this is still a linear differential equation,
and thus obeys the superposition principle. There-
fore, we can construct new solutions by adding dif-
ferent trial solutions (even if they correspond to dif-
ferent energies): the sum

|Ψ(t)〉 =
∑
n

cn exp(−iEnt/~)|ψn〉 (18.5)

is still a solution, where the complex constants cn
can be chosen arbitrarily. Here we assumed that
the energies En are discrete. For continuous ener-
gies, the sum is replaced by an integral,

|Ψ(t)〉 =

∫
dE c(E) exp(−iEt/~)|ψE〉. (18.6)

If both types of spectra coexist (like, e.g., in the
hydrogen atom, where we have a discrete set of
bound states for E < 0, and a continuum of ex-
tended states with E > 0), we can write

|Ψ(t)〉 =

∫
dE c(E) exp(−iEt/~)|ψE〉

+
∑
n

cn exp(−iEnt/~)|ψn〉. (18.7)

This expression covers all valid solutions of the
time-dependent Schrödinger equation with time-
independent Hamiltonian.

In practice, we often know the state |Ψ(t0)〉 ≡ |Ψ0〉
of the quantum system at some time t0. In that
case, the specific solution of the Schrödinger equa-
tion follows from Eq. (18.7) by a particular choice
of the constants cn and cE. Since the collection of
states ψn, ψE form an orthonormal basis, the co-
efficients can be obtained by evaluating the scalar
product,

cn = exp(iEnt0/~)〈ψn|Ψ0〉, (18.8)

c(E) = exp(iEt0/~)〈ψE |Ψ0〉. (18.9)

Here, we assumed that the states of the continu-
ous spectrum fulfill the orthonormalisation condi-
tion

〈ψE′ |ψE〉 = δ(E′ − E), (18.10)

where δ is the Dirac delta function, defined by∫∞
−∞ δ(x)f(x) dx = f(0).
The expansion coefficients cn determine the

probability to find the system in the discrete bound
state with energy En, while c(E) determines the
probability density of the extended energy eigen-
states in the continuous part of the spectrum:

P (En) = |cn|2, P (E) = |c(E)|2. (18.11)

These probabilities are independent of time, which
is a consequence of energy conservation in station-
ary quantum systems. The expectation value of the
energy follows from the general solution (18.7),

〈Ψ(t)|ĤΨ(t)〉 =
∑
n

En|cn|2 +

∫
dE E|c(E)|2. (18.12)

In the following, we formulate expressions only us-
ing the symbols for a discrete spectrum (quantities
cn, En, |ψn〉, ψn(x), etc.), but imply that these have
to be replaced by their continuous counterparts
(with the sum

∑
n replaced by integration over en-

ergy) if the spectrum is continuous.
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B. General solution via the time-evolution operator

The approach above requires to determine all
eigenstates of the system, and to match the initial
condition |Ψ(t0)〉 to a superposition of these states.
In many cases, a more formal approach proves ad-
vantageous: We seek an operator Û(t − t0) such
that

|Ψ(t)〉 = Û(t− t0)|Ψ(t0)〉. (18.13)

The operator Û(t) is known as the time-evolution
operator. The linearity of the time-dependent
Schrödinger equation guarantees that this opera-
tor is linear, too. Indeed, we can give a formal (but
often also practically useful) expression which re-
lates Û directly to the Hamiltonian:

Û(t) = exp(−iĤt/~). (18.14)

The right-hand side has to be interpreted as a
Taylor expansion; for any operator Â, exp(Â) =∑∞
n=0 Â

n/n!. This can be used to show

d

dt
Û(t) = − i

~
ĤÛ(t), (18.15)

where the derivative of an operator Â(t) is defined
as d

dt Â(t) = limε→0 ε
−1[Â(t + ε) − Â(t)]. The va-

lidity of Eq. (18.14) then follows by inserting Eq.
(18.13) into the time-dependent Schrödinger equa-
tion (18.1). The initial condition is verified by ob-
serving

Û(0) = Î , (18.16)

where Î is the identity operator (Î|ψ〉 = |ψ〉 for all
|ψ〉).

It directly follows from Eq. (18.14) that Û is uni-
tary:

Û−1(t) = Û(−t) = exp(iĤt/~) = Û†(t), (18.17)

where we used in the last step that Ĥ is hermitian.
Importantly, this guarantees that an initially nor-
malised state |Ψ(t)〉 remains normalised during the
time evolution.

C. Example I: Dynamics of the free particle

As a first example, we study the case of a free
particle in one dimension, for which the stationary
Schrödinger equation

Eψ(x) = − ~2

2m

d2

dx2
ψ(x) (18.18)

is solved by the momentum eigenfunctions

ψp(x) =
1√
2π~

exp(ipx/~), (18.19)

with energy given by Ep = p2/2m. There-
fore, the partial solutions of the time-dependent
Schrödinger equation are plane propagating waves

Ψp(x, t) =
1√
2π~

exp(ipx/~− iEpt/~). (18.20)

Assume that at time t0 = 0 the system is in a
state ψ(x), expressed as a superposition of plane
waves

ψ(x) =

∫ ∞
−∞

dp ψ̃(p)ψp(x). (18.21)

The expansion coefficients

ψ̃(p) = 〈ψp|ψ〉 =

∫ ∞
−∞

dxψ∗p(x)ψ(x) (18.22)

follow from the Fourier transformation of the ini-
tial state, and are identical to the momentum wave
function introduced in section VII.A. The time-
dependent state is then given by

Ψ(x, t) =
1√
2π~

∫ ∞
−∞

dp ψ̃(p) exp(ipx/~− iEpt/~).

(18.23)
We can also write this as

Ψ(x, t) =

∫ ∞
−∞

dp Ψ̃(p, t)ψp(x), (18.24)

i.e., as a Fourier transformation with time-
dependent coefficients

Ψ̃(p, t) = ψ̃(p) exp(−iEpt/~). (18.25)

In terms of this time-dependent momentum wave
function, the probability density for momentum is
given by P (p, t) = |Ψ̃(p, t)|2. For the free particle, the
probability density is stationary, P (p, t) = |ψ̃(p)|2,
which is a consequence of momentum conserva-
tion in absence of forces acting on the particle.

In order to get some insight into the time depen-
dence of the position wave function, let us consider
the case of a particle initially described by a wave
packet centred at x0 = 0,

ψ(x) = (2πσ2)−1/4 exp(−x2/4σ2 + ip0x/~), (18.26)

where σ and p0 are constants. As shown in sec-
tion VII.E, this wave packet has expectation val-
ues 〈x〉 = 0 and 〈p〉 = p0, as well as uncertainties
∆x = σ and ∆p = ~/2σ. We have also calculated the
corresponding momentum wave function

ψ̃(p) = (2σ2/~2π)1/4 exp[−σ2(p− p0)2/~2]. (18.27)

Equation (18.23) for the time-dependent wave
function then reduces to a (complex) Gaussian in-
tegral, which can be solved analytically. The re-
sults can be written as a generalised wave packet
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of the form

Ψ(x, t) = (2πσ2
t )−1/4 exp

[
− (x− p0t/m)2

4|σt|2

]
× exp

[
i
σ2

|σt|2

(
p0x

~
− p2

0t

2m~
+

x2~t
8mσ4

)]
,

(18.28)

where σt = σ + (i~/2mσ)t. The position probability
density

P (x, t) = (2π|σt|2)−1/2 exp

[
− (x− p0t/m)2

2|σt|2

]
(18.29)

is still a Gaussian, with a linearly drifting ex-
pectation value 〈x〉 = p0t/m, and an uncertainty
∆x = |σt| = σ

√
1 + (~2/4m2σ4)t2 which increases

slowly as long as t� mσ2/~.

D. Detour: the time of flight

Classically, the momentum of a free particle can
be measured in a time-of-flight experiment, where
one observes the particle’s positions x0 and x at
times t0 and t, and evaluates p = m(x− x0)/(t− t0).
Quantum mechanically, we cannot know position
and momentum at the time. As we now demon-
strate, it is still instructive to carry out such a mo-
mentum measurement. The main requirement for
its accuracy is to choose t − t0 sufficiently large,
so that the position probability spreads out over a
large region in space (therefore, the measurement
remains in accordance with the uncertainty prin-
ciple).

In order to see how this works, let us set t0 = 0
and assume that the particle is initially localised
around position x0 = 0, which can be enforced in
practice by confining the particle in a suitable po-
tential. We denote the corresponding wave func-
tion by ψ(x), but don’t require this to be a Gaus-
sian wave packet. Because ψ(x) is well localised,
we can assume (again in accordance with the un-
certainty principle) that the associated momentum
wave function ψ̃(p) is rather smooth.

Next, we let the particle move freely (in the prac-
tical setting above, we switch off the confining po-
tential). For large times, the time-evolved wave
function (18.23) can be approximated using an ad-
vanced mathematical method, known as the sta-
tionary phase approximation. The idea behind this
approximation is to observe that for large t, the
function S(x) ≡ px − p2t/2m in the exponent of the
integrand changes rapidly as a function of the in-
tegration variable p. Therefore, the integrand os-
cillates wildly, and tends to average out. The only
exceptions are the vicinities of values ps of p where

the function S(x) is stationary, i.e., has a vanish-
ing derivative. Here, this is the case for ps = mx/t.
In the vicinity of this stationary point the integral
can be approximated by a complex Gaussian. The
result of this approximation is

Ψ(x, t) ≈
√
m/tψ̃(mx/t) exp

(
i
x2m

2t~
− iπ

4

)
. (18.30)

Therefore, the position probability density at time
t is

P (x, t) ≈ m

t
|ψ̃(mx/t)|2. (18.31)

This can be translated into a probability distribu-
tion of the momentum p = mx/t:

P (p) = P (x, t)
dx

dp
= |ψ̃(p)|. (18.32)

In this way, we recover our original interpretation
of the momentum wave function! Note that at large
times, the initial wave packet has spread out over a
large region in space; this counteracts the increas-
ing accuracy of this momentum measurement, in
accordance with the uncertainty principle.

E. Example II: coherent state dynamics in the harmonic
oscillator

Interestingly, with suitable initial conditions the
quantum dynamics of the harmonic oscillator
turns out to be somewhat simpler than that of the
free particle. This is realised when the initial wave-
function corresponds to the displaced ground state
wave function (a so-called coherent state)

ψ(x) = ψ0(x−X0) = (2πσ2)−1/4 exp[−(x−X0)2/4σ2],
(18.33)

where σ2 = ~/2mω, and X0 is a constant. The
time-dependent solution can then be found from
the ansatz

Ψ(x, t) = ψ0(x−X(t)) exp[ixP (t)/~+iS(t)/~], (18.34)

where X(t), P (t), and S(t) are functions of time.
We insert this into the time-dependent Schrödinger
equation and compare both sides to obtain

[−imωXẊ − Ṡ] + x{−Ṗ + imωẊ}

=

[
~ω
2

+
P 2

2m
− mω2

2
X2 − iPXω

]
+ x{mω2X + iPω},

(18.35)

where we suppressed the argument t of X and P ,
and used a dot to denote time derivatives. Com-
paring the real and imaginary parts in the curly
brackets we find

Ṗ = −mω2X, Ẋ = P/m, (18.36)
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which are just the classical equations of motion for
the oscillator. The solution for initial conditions
X(0) = X0, P (0) = 0 is given by

X(t) = X0 cos(ωt), P (t) = −mωX0 sin(ωt). (18.37)

We now can obtain S by comparing the bracketed
terms in Eq. (18.35), which demands

Ṡ = −~ω + ẊP + ṖX

2
⇒ S(t) = −~ωt+ P (t)X(t)

2
.

(18.38)
The time-dependent solution Ψ(x, y) follows by

inserting these expressions in Eq. (18.34). This al-
lows to determine the associated expectation val-
ues 〈x〉 = X(t) of position and 〈p〉 = P (t) of momen-
tum, which therefore follow the classical motion
(this is a consequence of the Ehrenfest theorem,
which establishes a similar relation for arbitrary
quantum systems). Furthermore, the uncertain-
ties ∆x = σ and ∆p = ~/2σ are time-independent.
Therefore, the motion of this wave packet mimics
the classical motion as closely as it is possible un-
der the constraints of the uncertainty principle.

The expectation value of energy

〈Ĥ〉 = ~ω/2 + P 2(t)/2m+mω2X2(t)/2 (18.39)

= ~ω/2 +mω2X2
0/2 (18.40)

is also time-independent, but this is simply a
consequence of energy conservation in stationary
problems. Compared to the classical expression,
we encounter an additional positive contribution
~ω/2, the ground state energy, which we associated
with the zero-point motion enforced by the uncer-
tainty principle.

F. Example III: Spin precession
(dynamics of a two-state system)

A large range of quantum problems only in-
volves a pair of quantum states, either exactly as
for the spin of an electron, or approximately be-
cause other states are energetically unaccessible
and therefore can be neglected. Examples of the
latter situation are the dynamics in the ground and
first excited state of an atom at low energies, or the
low-energy dynamics of a particle in a symmetric
double-well potential. In all these cases, we can re-
duce the wave function to a two-component vector
ψ =

(
α
β

)
, where the two components determine the

probabilities P1 = |α|2, P2 = |β|2 to find the system
in state

(
1
0

)
or
(

0
1

)
, respectively.

We remind ourselves of the 3-dimensional real
polarisation vector

~P = (〈σx〉, 〈σy〉, 〈σz〉) (18.41)

= (2 Reα∗β, 2 Imα∗β, |α|2 − |β|2), (18.42)

where σx, σy, and σz are the three Pauli matrices
which we introduced for the description of the elec-
tronic spin. If ψ is normalised then the polarisation
vector is of unit length, i.e., it is restricted to the
surface of a sphere, the so-called Bloch sphere.

Linear operators Â acting on two-component
states ψ are of the form of a 2× 2-dimensional ma-
trix. These can be expressed as a sum

Â = a0I + axσx + ayσy + azσz, (18.43)

where I is the 2 × 2-dimensional identity matrix.
For hermitian operators, the coefficients a0,x,y,z are
all real. Furthermore, any unitary operator can
also be written formally as

Û = exp[−iϕ(nxσx + nyσx + nzσx)/2]eiχ (18.44)

= cos(ϕ/2)eiχI − i sin(ϕ/2)eiχ(nxσx + nyσy + nzσz),

(18.45)

where we assume n2
x + n2

y + n2
z = 1. (The expres-

sion on the second line follows directly from the
Taylor-series definition of the exponential func-
tion.) By examining the polarisation vector of the
state Ûψ one finds that Û induces a rigid rotation
of the Bloch sphere, by an angle ϕ about the axis
n = nxi + nyj + nzk.

We now use these general features of two-
component vectors and matrices to examine the
dynamics of a two-state system, based on a time-
independent Hamiltonian of the form

H = axσx + ayσy + azσz (18.46)

where the three coefficients are all real and time-
independent. (We set a0 = 0 since this simply shifts
the energy. For an electronic spin, this Hamilto-
nian can be realised by applying a magnetic field
of suitable strength B into the direction n of the
vector a = axi + ayj + azk = an, which then is given
by a = gee~

4me
B where ge ≈ 2 is the g-factor.) A general

solution of this problem is provided by the time-
evolution operator

Û(t) = exp(−iĤt/~) (18.47)

= exp[−iωt(nxσx + nyσy + nzσz)/2],(18.48)

where ω = (2a/~) is known as the Larmor fre-
quency. (For an electronic spin in a magnetic field,
ω = geeB

2me
.) Being unitary, the time-evolution oper-

ator can be cast into the form Eq. (18.44), which
here simply amounts to equating ϕ = ωt and χ = 0,
while n remains fixed. Therefore, the dynamics
corresponds to a permanent rotation of the Bloch
sphere about the axis n, with angular frequency ω.
This motion, known as Larmor precession, is anal-
ogous to the precession of a rotating top under the
influence of gravity.
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In order to get further insight into the dynam-
ics (and illustrate the solution method based on
the eigenstates of the stationary Schrödinger equa-
tion), we now specialise to the case of a Hamilto-
nian

H = −∆

2
σx =

(
0 −∆/2

−∆/2 0

)
, (18.49)

where we have expressed the coefficient ax in
terms of a suitable constant ∆ whose meaning will
become clear shortly. For a spin, this Hamiltonian
can be realised by applying a magnetic field into
the x direction. For the double well, ∆ is associ-
ated with the tunneling between the troughs.

The stationary Schrödinger equation Eψ = Hψ is
solved by the eigenvectors ψ+ = 2−1/2

(
1
1

)
(the sym-

metric state, with energy −∆/2) and ψ− = 2−1/2
(

1
−1

)
(the antisymmetric state, with energy ∆/2). There-
fore, ∆ amounts to the energy difference between
the two states (in the context of the double well,
this is also known as the tunnel splitting).

We now can use Eq. (18.5) to construct the time-
dependent state

Ψ(t) = a+ exp(i∆t/2~)ψ+ + a− exp(−i∆t/2~)ψ−,
(18.50)

where a− and a+ are determined by the initial con-
ditions ψ(0). The state is normalised for |a+|2 +
|a−|2 = 1.

Let us assume that the system is initially in
the state ψ(0) =

(
1
0

)
. Then the solution of the

Schrödinger equation is

ψ(t) =

(
cos(∆t/2~)

i sin(∆t/2~)

)
. (18.51)

This gives the probability P1 = cos2(∆t/2~) = 1
2 [1 +

cos(∆t/~)] that the system occupies the state
(

1
0

)
and P2 = sin2(∆t/2~) = 1

2 [1− cos(∆t/~)] that the sys-
tem occupies the state

(
0
1

)
.

Hence the quantum system oscillates between
the states

(
1
0

)
and

(
0
1

)
. The oscillation is periodic,

P1(t + T ) = P1(t), with period T = 2π~/∆ (corre-
sponding to Larmor frequency ω = ∆/~). If we wait
for half a period, t = T/2, the state changes from(

1
0

)
to
(

0
1

)
.

For spin, these oscillations are again interpreted
as a precession in the magnetic field. For the dou-
ble well, the oscillations correspond to tunnelling
back and forth between the two troughs.

XIX. DYNAMICS FOR TIME-DEPENDENT HAMILTONIANS

We now turn to the dynamics of quantum sys-
tems with a Hamiltonian Ĥ(t) which itself changes

over time. This time dependence is generally in-
duced externally, e.g., by the dynamics in the envi-
ronment of the system, or when a system is driven
by external fields. However, a very similar situ-
ation arises if we start with a stationary system
but focus on only some of its physical components;
the time dependence then arises from the inter-
action with the rest of the system. Henceforth,
we will call systems with time-dependent Hamil-
tonian driven, and refer to the explicit time depen-
dence as the driving, irrespective of the actual ori-
gin of this time dependence. Our main concern
will be to investigate how a time-dependent poten-
tial induces transitions between quantum states.
The starting point will again be the time-dependent
Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉. (19.1)

A. Rabi oscillations

A striking effect induced by driving are transi-
tions between quantum levels. Let us consider a
harmonically driven two-level system with Hamil-
tonian

Ĥ(t) =

(
−∆/2 V exp(iωt)

V exp(−iωt) ∆/2

)
, (19.2)

where V is a real constant. In absence of the driv-
ing (V = 0), the Hamiltonian possesses station-
ary eigenstates ψ1 =

(
1
0

)
, ψ2 =

(
0
1

)
with energies

E1 = −∆/2 and E2 = ∆/2, respectively, and no
transitions occur if the system is placed in one of
these states.

For finite V , we can find the exact dynamics of
the system by stipulating

Ψ(t) =

(
a exp[i(Ω + ω)t/2]
b exp[i(Ω− ω)t/2]

)
, (19.3)

where the constants Ω, a and b determine the tran-
sition rates and amplitudes between the states
ψ1,2. These quantities are determined by insert-
ing Eq. (19.3) into the time-dependent Schrödinger
equation (19.1), which results in the two equations

[−~(Ω + ω)/2]a = −(∆/2)a+ V b, (19.4)

[−~(Ω− ω)/2]b = V a+ (∆/2)b. (19.5)

This homogeneous system with two unknowns a,
b is only solvable if both equations are linearly de-
pendent, which requires

1

4
[~(Ω + ω)−∆][~(Ω− ω) + ∆]− V 2 = 0. (19.6)
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There are two solutions,

Ω = ±Ω0, Ω0 =
√

(ω −∆/~)2 + 4V 2/~2, (19.7)

where Ω0 is the Rabi frequency. The associated
amplitudes are

a± = 2V, b± = ∆− ~ω ∓ ~Ω0. (19.8)

These two solutions can be superposed to find the
full time dependence of the quantum state for ar-
bitrary initial conditions. If the initial state is
Ψ(0) = ψ1, then

Ψ(t) =

(
eiωt/2

[
cos Ω0t

2 − i
ω−∆/~

Ω0
sin Ω0t

2

]
−i 2V

~Ω0
e−iωt/2 sin Ω0t

2

)
. (19.9)

The probabilities for occupation of states 1 and 2
follow as

P1 = 1−
(

2V

~Ω0

)2

sin2 Ω0t

2
, P2 =

(
2V

~Ω0

)2

sin2 Ω0t

2
.

(19.10)
These probabilities vary periodically with the Rabi
frequency, which therefore determines the time
T = 2π/Ω0 after which the system returns into its
initial state. One such period defines a Rabi cy-
cle. After half a cycle, the occupation probability of
state 2 is maximal. It reaches P2 = 1 is the system
is driven at resonance, ω = ∆/~, where the Rabi
frequency Ω0 = 2|V |/~ attains its minimal value.
At resonance, the system periodically absorbs and
emits an energy ∆ = ~ω, in close analogy to the
Planck relation.

The Rabi cycle forms the basis of electron spin
resonance (ESR), muon spin resonance, and nu-
clear magnetic resonance (NMR), which are widely
used experimental techniques in material science.

B. General solution via the time-evolution operator

For most driven quantum systems the time-
dependent Schrödinger equation (19.1) cannot be
solved exactly as in the preceding example. A
systematic treatment is still possible in terms
of a suitably generalised time-evolution operator
Û(t, t0), which is obtained by introducing two in-
dependent time arguments and stipulating

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉. (19.11)

The time-dependent Schrödinger equation (19.1)
then demands that Û obeys

i~
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0), (19.12)

which has to be solved with initial condition

Û(t0, t0) = Î . (19.13)

The defining property (19.11) entails the multi-
plication rule Û(t, t0) = Û(t, t1)Û(t1, t0). This can be
used to construct an explicit, but somewhat for-
mal solution of (19.12) which generalizes the ex-
pression Û(t) = exp(−iĤt/~) obtained for station-
ary problems. In order to formulate this solution,
we introduce the time-ordering operator T , which
acts on products of time-dependent operators ac-
cording to

T Â(s)B̂(s′) =

{
Â(s)B̂(s′), s ≥ s′
B̂(s′)Â(s), s < s′

. (19.14)

This is more accurately termed a superoperator
since it doesn’t act the the wavefunction but on
operators itself; T takes a product of such opera-
tors an shuffles the operator with the latest time
argument to the left. We then can write

Û(t, t0) = T exp

[
− i
~

∫ t

t0

dsH(s)

]
, (19.15)

where T acts on the terms of the Taylor expansion
of the exponential function. This time ordering is
enforced because in Eq. (19.12), Ĥ(t) appears to
the left of Û(t, t0) where t refers to the latest time
during the evolution from t0 to t (note that the op-
erators Ĥ(t) and Û(t, t0) generally don’t commute).

While Eq. (19.15) is of some practical use, there
exist advanced approaches based on the time evo-
lution operator which circumvent its explicit con-
struction. Among the more notable ones are oper-
ator techniques (such as the Heisenberg and inter-
action pictures), path integrals, and semiclassical
approximations. In the following we briefly discuss
the Heisenberg picture, and the related Ehrenfest
theorem.

C. Ehrenfest theorem and Heisenberg picture

We start with a general statement about expecta-
tion values. Let us consider the expectation value
of an observable Â,

〈Ψ(t)|Â|Ψ(t)〉 = 〈Ψ(0)|Û†(t, 0)ÂÛ(t, 0)|Ψ(0)〉, (19.16)

and evaluate its time derivative using Eq. (19.12)
(the analogous equation for Û† follows from tak-
ing the hermitian conjugate of this equation). This
then delivers the Ehrenfest theorem,

d

dt
〈Ψ(t)|Â|Ψ(t)〉 =

i

~
〈Ψ(t)|[Ĥ, Â]|Ψ(t)〉, (19.17)

thus, a relation between the time derivative of the
expectation value and an expectation value of a
commutator. In some cases, these equations are
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formally identical to the classical equations of mo-
tion (following from Newton’s equation). In general,
however, the commutators generate new expres-
sions, giving rise to an infinite hierarchy of equa-
tions. This problem can be circumvented by intro-
ducing time-dependent operators,

Â(t) = Û†(t, 0)ÂÛ(t, 0), (19.18)

which fulfill the Heisenberg equations of motion

d

dt
Â =

i

~
[Ĥ, Â]. (19.19)

Expectation values are then evaluated as

〈Ψ(0)|Â(t)|Ψ(0)〉, (19.20)

thus, the Heisenberg picture replaces the time-
evolution of the quantum state by time-evolution
of operators.

An application of the Ehrenfest theorem and the
Heisenberg equations of motion is discussed as a
worksheet question.

D. Time-dependent perturbation theory and Fermi’s
golden rule

We now revert back to the type of quantum me-
chanics pursued so far, and discuss the most di-
rect approach to time dependence, time-dependent
perturbation theory, which provides estimates of
transition rates if the driving is weak.

Time-dependent perturbation theory sets out by
separating the stationary parts Ĥ0 of the Hamilto-
nian Ĥ(t) = Ĥ0 + ŵ(t) from the driving ŵ(t). In ab-
sence of the driving, the Hamiltonian is stationary
and has energies En and eigenstates |ψn〉 solving
the stationary Schrödinger equation

En|ψn〉 = Ĥ0|ψn〉. (19.21)

In presence of the driving, we use these states and
energies to express the quantum state as

|Ψ(t)〉 =
∑
n

cn(t) exp(−iEnt/~)|ψn〉. (19.22)

The expansion coefficients cn(t) determine the
probability Pn(t) = |cn(t)|2 to find the system in the
stationary state |ψn〉. At a given time t0, their val-
ues can be obtained from the scalar product

cn = exp(iEnt0/~)〈ψn|Ψ0〉. (19.23)

The subsequent time dependence of these
coefficients follows from the time-dependent
Schrödinger equation (19.1):

i~
dcm
dt

=
∑
n

wmn(t)eiEmnt/~cn(t), (19.24)

where wmn(t) = 〈ψm|ŵ(t)|ψn〉 denotes the time-
dependent matrix elements of the driving, and we
defined Emn = Em − En.

In absence of the driving, the coefficients cn are
constant. If the driving is weak, they only change
slowly, and we can approximate cn(t) ≈ c0n on the
right-hand side of Eq. (19.24). We can then in-
tegrate to obtain the first order of time-dependent
perturbation,

cm(t) ≈ c0m +
1

i~

∫ t

t0

∑
n

wmn(τ)eiEmnτ/~c0n dτ ≡ c(1)
m (t).

(19.25)
This procedure can be repeated by inserting the
improved result cn(t) ≈ c

(1)
n (t) into the right-hand

side of Eq. (19.24), and integrating again. This de-
livers the second order of perturbation theory, and
in principle can be iterated to successively gener-
ate expressions of increasingly high order, as well.

If initially only a single state n is populated
[cn(t0) = 1, cm(t0) = 0 for m 6= n], the first-order
result (19.25) estimates the transition probability
into state m as

P (1)
n→m =

1

~2

∣∣∣∣∫ t

t0

wmn(τ)eiEmnτ/~ dτ

∣∣∣∣2 . (19.26)

Furthermore, to this level of approximation the
amplitude

cn(t) ≈ exp

[
− i
~

∫ t

t0

wnn(τ)dτ

]
(19.27)

of the initially populated state only changes its
phase.

1. Sudden perturbation

Consider a system whose Hamiltonian changes
abruptly from Ĥ = Ĥ0 for t < 0 to Ĥ = Ĥ0 + Ŵ ≡ Ĥ1

for t > 0, where Ĥ0 and Ŵ are time-independent
[therefore, ŵ(t) = Ŵ (t)Θ(t), where Θ(t) is the unit
step function]. This change does not induce any
instantaneous jump of the state |Ψ(t)〉 at t = 0,
but modifies the subsequent dynamics because
the ‘old’ eigenstates of |ψ(0)

n 〉 and energies E(0)
n of Ĥ0

differ from the ‘new’ eigenstates |ψ(1)
n 〉 and energies

E
(1)
n of Ĥ1. There are two natural ways to describe

the effects of such a sudden approximation:
(i) We can calculate the overlaps dmn = 〈ψ(1)

m |ψ(0)
n 〉

between the two sets of eigenstates. These deliver
the probabilities Pmn = |dmn|2 for transitions from
an old eigenstate |ψ(0)

n 〉 to a new eigenstate |ψ(1)
m 〉.

(ii) We can work with the eigenstates |ψ(0)
n 〉

throughout, and examine how their population
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changes over time. Using the first-order approx-
imation (19.26), the transition probability is esti-
mated as

P (1)
n→m =

2π

~
|Ŵmn|2

{
2~
π

sin2(Emnt/2~)

|Emn|2

}
. (19.28)

The function in the curly brackets has a maxi-
mum around Emn = 0, and decays to small val-
ues when one deviates by ∆Emn ∼ ~/∆t, in close
resemblance to the energy-time uncertainty prin-
ciple. For sufficiently large times, this function be-
comes sharply peaked and can be approximated
as tδ(Em − En), where we again encounter Dirac’s
delta function. Therefore, energy-conserving tran-
sitions are favored.

In practical situations, we are often interested
in transitions into a continuous set of extended
states with E ≈ En (sometimes further specified by
propagation direction into which the system disin-
tegrates, spin, or similar common characteristics
of the final states). The delta function is then re-
placed by the density ρ(E) of the final states, and
the transition rate Γn =

∑
m dPn→m/dt into these

states can be estimated as

Γn =
2π

~
|Ŵmn|2ρ(En), (19.29)

where we assume that Wmn ≈ const for the speci-
fied set of final states. This important expression
(first derived by Dirac) is known as Fermi’s golden
rule.

2. Harmonic perturbation

Fermi’s golden rule can be generalised to the im-
portant case of a harmonic perturbation

ŵ(t) = Ŵeiωt + Ŵ †e−iωt, (19.30)

where Ŵ is time-independent. The derivation fol-
lows the steps for the sudden perturbation, and
simply requires to account for the additional fac-
tors e±iωτ in the integrand of (19.26). The transi-
tion probability then has two maxima: one around
Em = En − ~ω, associated with (stimulated) emis-
sion of an amount of energy ~ω, and another
around Em = En+~ω, associated with absorption of
an amount of energy ~ω. The associated transition
rates are given by

Γn =
2π

~
|Ŵmn|2ρ(Em) (emission, Em = En − ~ω),

(19.31)

Γn =
2π

~
|Ŵ †mn|2ρ(Em) (absorption, Em = En + ~ω).

(19.32)

E. Radiative transitions

An important application of Fermi’s golden rule
are transitions between two atomic energy levels
E1 and E2, induced by the action of an (approxi-
mately) monochromatic electromagnetic field with
central frequency tuned to ω = |E2 − E1|/~. Since
the wavelength of the field is generally far larger
than the extent of the atomic electronic orbitals,
one can apply the dipole approximation in which
the interaction is of the form

ŵ(t) = µ̂ ·E0(eiωt + e−iωt), (19.33)

where µ̂ = er is the dipole operator. Averaged over
the direction of E0, the matrix element of the per-
turbation takes the form

|Ŵ21|2 =
|E0|2

3
|µ21|2, (19.34)

where

µ21 = e

∫∫∫
d3rψ∗2(r)rψ1(r) (19.35)

is the matrix element of the dipole operator, eval-
uated with the two atomic wave functions in-
volved in the transition (note that µ21 is a three-
component vector). Fermi’s golden rule (19.31)
gives

Γ1→2 =
π|µ21|2

3ε0~2

I(ω)

c
, (19.36)

where I(ω) = 2cε0|E0|2 is the EM field intensity
distribution. The corresponding energy density is
u = I/c. The ratio B1→2 = Γ1→2/u(ω), known as the
Einstein B coefficient, is therefore approximated as

B1→2 =
π|µ21|2

3ε0~2
. (19.37)

For a pair of non-degenerate levels as considered
so far, the coefficients for absorption and emission
are identical. In the case of degeneracy, they dif-
fer by a factor B1→2/B2→1 = g2/g1, which enters
through the density of final states.

The above considerations apply to classical ra-
diation. When the EM field is quantised, its en-
ergy is carried by photons whose number can fluc-
tuate according to the probabilistic principles of
quantum mechanics. These fluctuations give rise
to spontaneous emissions. Avoiding details of the
field quantisation, we obtain the rate for this pro-
cesses by a phenomenological generalisation of Eq.
(19.36). For this, we assume that the field fluctua-
tions amount to an energy ~ω per electromagnetic
mode. Combined with the local density of pho-
ton states per unit energy interval ν(~ω) = ω2/π2~c3
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(see Eq. (13.21)), these fluctuations correspond to
a classical field intensity of I(ω) = ~ω3/π2~c2. Ac-
cording to Eq. (19.36), the spontaneous emission
rate for an atomic transition between two levels
with energy difference E2 − E1 = ~ω (also known
as the Einstein A coefficient) is, thus, given by

Γ
(sp)
1→2 =

ω3

3πε0~c3
|µ21|2. (19.38)

This expression typically allows to obtain highly
accurate values for the life time of an electron in
an atomic orbital. For example, for the transition
2p → 1s in the hydrogen atom, the squared dipole
matrix element is

|µ21|2 =
215

310

(
4πε0~2

µe

)2

= (6.32× 10−30 C m)2,

(19.39)
where µ ≈ me is the reduced mass of the electron.
According to Eq. (19.38), with ω = (3/4) Ry/~ =
1.55×1016s−1, this amounts to a spontaneous emis-
sion rate Γ = 6.27 × 108s−1. Perturbation theory
is well justified because the rate Γ ≈ 4 × 10−8 ω is
much smaller than the frequency ω of the emitted
radiation. The associated decay time is τ = 1/Γ =
1.60 × 10−9s. We know from the discussion of the
energy-time uncertainty principle that this decay
results in a Lorentzian broadening of the emitted
frequency intensity, with full width at half maxi-
mum ∆ω = Γ.

XX. DIRAC NOTATION FOR COMPOSITE SYSTEMS

In preparation for the concluding chapter of this
course, we now extend in this the Dirac notation to
systems with more than one particle or several de-
grees of freedom, and also introduce a generalised
notion of a state (the density matrix).

A. Many degrees of freedom

Simultaneous observables appear in particular
when a particle has many degrees of freedom,
which may be continuous (like the three compo-
nents of the position vector r, discrete (like spin),
or both (as for a single electron, which possess
all these degrees freedoms). In ordinary notation,
the state of the electron is described by a position-
dependent spinor wavefunction

ψ =

(
ψ↑(r)
ψ↓(r)

)
, (20.1)

where |ψ↑(r)|2 is the probability density to find the
electron at position r with spin Sz = ~/2 (spin up),

while |ψ↓(r)|2 is the probability density to find the
electron at position r with spin Sz = −~/2 (spin
down).

In Dirac notation, we can write these states in
terms of a basis |r, Sz〉, such that

|ψ〉 =

∫
drψ↑(r)|r, ~/2〉+

∫
drψ↓(r)|r,−~/2〉. (20.2)

1. Factorisation and entanglement

For the special case

|ψ〉 =

∫
drψ(r)(ψ↑|r, ~/2〉+ ψ↓|r,−~/2〉), (20.3)

where the amplitudes ψ↑ and ψ↓ do not depend
on position, one says that the spinor wavefunction
factorises into the orbital wavefunction ψ(r) and
the spinor

(
ψ↑

ψ↓

)
. In the case that the wavefunction

does not factorise one says that the spin and the
position of the electron are entangled.

As a matter of fact, we encountered entangle-
ment already in the context of the Stern Ger-
lach experiment. Ignoring the individual degrees
of freedom, we can describe a silver atom by a
spinor wavefunction (20.1), where r is the centre
of mass of the atom and the spin is the total spin
of the atom (in its ground state, the total spin of
a silver atom is ~/2, just as for a single electron).
In a Stern-Gerlach experiment, the wavefunction
factorises before an atom enters the apparatus,
since the path on which the atoms move from the
oven towards the apparatus is independent of their
spin state. Behind the apparatus, however, spin
and position of the atoms have become entangled:
The position at which an atom is collected on the
screen depends on its spin (two spots are observed,
where one corresponds to atoms with Sz = ~/2 and
the other corresponds to Sz = −~/2). This entan-
glement is created inside the apparatus, through
the spin- and position-dependent interaction with
the magnetic field.

B. Density matrix

An ensemble is a large collection of physically
identical quantum systems, which however can be
described by different states. When all the states
are identical the ensemble is said to be pure, other-
wise it is mixed. In general, we specify that a frac-
tion Pi of states is in state |ψi〉, where

∑
i Pi = 1 and

〈ψi|ψi〉 = 1. Starting from a pure ensemble with all
members in state |ψ〉, such a mixed ensemble is
obtained, e.g., by measurement of an observable,
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with Pi and |ψi〉 obtained as described in the pre-
vious section. In the ensemble, expectation values
are defined by 〈A〉 =

∑
i Pi〈ψi|Â|ψi〉.

By construction, a mixed ensemble cannot be
described by a single quantum state. However, it
is possible to define a statistical operator ρ̂, most
commonly known as the density matrix, which al-
lows to calculate all expectation values in a given
mixed ensemble. This operator is given by

ρ̂ =
∑
i

Pi|ψi〉〈ψi|, (20.4)

and the expectation values are obtained by

〈A〉ρ = tr (Âρ̂). (20.5)

Here, tr B̂ denotes the trace of an operator, which
in any given orthonormal basis can be calculated
as tr B̂ =

∑
n〈n|B̂n〉 =

∑
nBnn.

Normalisation of states carries over to the prop-
erty tr ρ̂ = 1. Moreover, the density matrix is her-
mitian and positive definite. This entails that in its
eigenrepresentation ρ̂ =

∑
n pn|n〉〈n|, all eigenval-

ues are nonnegative, pn > 0; they also sum up to
unity,

∑
n pn = 1. (The nonvanishing eigenvalues

pn are only identical to the values Pi if the states
|ψi〉 used to define the ensemble are orthogonal to
each other.)

For a pure ensemble, pn = 1 for one state, while
all the other pm = 0 (m 6= n). In this case, ρ̂ =
|n〉〈n| = Ên is a projection operator, and therefore
fulfills ρ̂2 = ρ̂. It follows that for a pure state tr ρ̂2 =
1. For a mixed state, however tr ρ̂2 =

∑
n p

2
n < 1.

The quantity P = tr ρ̂2, also known as the pu-
rity, therefore easily distinguishes pure from mixed
states. The maximally mixed state is described by
the density matrix ρ̂ = 1

N Î (where N is the Hilbert
space dimension), and has purity P = 1/N .

In a given representation, the density matrix of a
pure state |ψ〉 can be obtained from ρ = ψψ†, which
is useful for specific calculations.

The time evolution of the density matrix follows
from the Schrödinger equation, and is given by
d
dt ρ̂ = i

~ [ρ̂, Ĥ]. The general solution can be written
as ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0), where Û is the unitary
time evolution operator.

C. Example: Two-state systems

Nature provides us with a wealth of quantum
systems for which only two states are important.
Besides spin, further examples are atomic transi-
tions between the ground state and a selected ex-
cited state, the tunnelling of a particle between the

almost-degenerate lowest-energy states of a dou-
ble well, or two the orthogonal linear polarisation
states of a photons. The quantum system can then
be described by a spinor wavefunction

(
α
β

)
, where

the amplitudes α and β are now associated, e.g.,
with the occupation probability of the ground or
excited state in the atom, or describe whether the
particle is located in the right or left trough of the
double well.

In the Dirac notation, given an orthonormal ba-
sis |0〉, |1〉 the state of the system can be written
as

|ψ〉 = α|0〉+ β|1〉, (20.6)

while the density matrix is of the general form

ρ̂ = ρ00|0〉〈0|+ ρ01|0〉〈1|+ ρ10|1〉〈0|+ ρ11|1〉〈1|. (20.7)

It is again useful to characterize the state (be it
mixed or pure) by the polarisation vector

~P = (〈X〉, 〈Y 〉, 〈Z〉). (20.8)

For a normalised pure state,

~P = (2 Reα∗β, 2 Imα∗β, |α|2 − |β|2) (20.9)

is of unit length, and therefore lies on the surface
of the Bloch sphere. In terms of spherical polar
coordinates on this sphere,

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉. (20.10)

For a mixed state, |~P | < 1 so that the vector lies
within the sphere. In terms of these expectation
values, the components of the density matrix can
be written as

ρ =
1

2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)
=

1

2
(I+PxX+PyY+PzZ).

(20.11)
The purity of this density matrix is given by P =
1
2 (1 + |~P |2).

D. Composite systems

Another important example where simultaneous
observables occur are composite systems (say, a
system composed of distinguishable parts 1 and
2), where incomplete information can be acquired
by measuring an observable of a subsystem (say,
part 1). Starting from an orthonormal basis |n〉
(n = 1, . . . ,N1) for system 1 and |m〉 (m = 1, . . . ,N2)
for system 2, the joint state |ψ〉 =

∑
nm ψnm|nm〉 of

the composite system can be written by using com-
bined basis states |nm〉, sometimes also written as
|n〉|m〉 or |n〉 ⊗ |m〉. The corresponding dual basis
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vectors are denoted by 〈nm|. The Hilbert space di-
mension of the composite system is therefore given
by N = N1N2. General operators can be written as
Â =

∑
nmklAnk,ml|nk〉〈ml|. Operators acting on sub-

system 1 will be denoted by Â1, and have represen-
tation Â1 =

∑
nmk A

(1)
nm|nk〉〈mk|. Operators acting

on subsystem 2 will be denoted by Â2, and have
representation Â2 =

∑
nklA

(2)
kl |nk〉〈nl|. This results

in the convenient block matrix form

A1 =


A

(1)
11 I A

(1)
12 I · · ·

A
(1)
21 I A

(1)
22 I · · ·

...
...

. . .

 , A2 =

 A(2) 0 · · ·
0 A(2) · · ·
...

...
. . .

 ,

(20.12)
where I is the N2 × N2-dimensional identity ma-
trix. Here, the basis states are ordered as
|1, 1〉, |1, 2〉, . . . , |1,N2〉, |2, 1〉, |2, 2〉, . . ..

E. Entanglement in composite systems

Sometimes, the state of a composite system can
still be written as the product |ϕ〉|χ〉 of two states,
where |ϕ〉 describes system 1 and |χ〉 describes sys-
tem 2. Such states are called separable. This
requires that the coefficients can be written as
ψnm = ϕnχm. States that are not separable are
called entangled.

1. Reduced density matrix

In order to determine whether states are separa-
ble or entangled, it is useful to consider measure-
ments of observables of one subsystem, say system
1. When a state is separable, |ψ〉 = |ϕ〉|χ〉, the out-
come of such measurements only depends on |ϕ〉.
However, when the system is entangled, measure-
ments on one subsystem cannot be described by
a single state of that system. It is then still pos-
sible to describe these measurements by a density
matrix

ρ̂1 =
∑
nmk

〈nk|ψ〉〈ψ|mk〉|n〉〈m|, (20.13)

known as the reduced density matrix. This means
that all expectation values can be computed ac-
cording to 〈A〉 = tr Âρ̂1. Analogously, measure-
ments of the second subsystem are described by a
reduced density matrix ρ̂2 =

∑
nkl〈nk|ψ〉〈ψ|nl〉|k〉〈l|.

If a state |ψ〉 is separable, the reduced density ma-
trices are pure, i.e., tr ρ̂2

1 = tr ρ̂2
2 = 1. If the state

|ψ〉 is entangled, the reduced density matrices are
both mixed, i.e., tr ρ̂2

1 = tr ρ̂2
2 < 1.

Reduced density matrices can also be defined
when the composite system is already in a mixed

state, described by a density matrix ρ̂. They are
then given by

ρ̂1 =
∑
nmk

〈nk|ρ̂|mk〉|n〉〈m|, ρ2 =
∑
nkl

〈nk|ρ̂|nl〉|k〉〈l|.

(20.14)
These constructions are also called partial trace,
and then written as ρ̂1 = tr2 ρ̂, ρ̂2 = tr1 ρ̂. This
designation becomes clear when one considers the
block form

ρ =


ρ

(2)
11 ρ

(2)
12 · · ·

ρ
(2)
21 ρ

(2)
22 · · ·

...
...

. . .

 (20.15)

of the density matrix in the composite basis, where
ρ

(2)
nm are N2 ×N2-dimensional matrices. Then,

ρ1 =


tr ρ

(2)
11 tr ρ

(2)
12 · · ·

tr ρ
(2)
21 tr ρ

(2)
22 · · ·

...
...

. . .

 , ρ2 =
∑
n

ρ(2)
nn . (20.16)

In this more general case of a composite system
with a mixed density matrix, the purities of both
reduced density matrices do not need to be identi-
cal, and cannot simply be used to decide whether
the system is entangled or not; this is discussed in
more detail below.

2. Bell pairs and entanglement

As an example of a composite system, consider
two two-state systems. Pure states can be written
as |ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉, and are nor-
malised if |α|2 + |β|2 + |γ|2 + |δ|2 = 1. An particularly
interesting state is given by

|ψ〉 =
1√
2
|01〉+

1√
2
|10〉. (20.17)

This state is entangled: if the state of the first part
of the system is determined through a measure-
ment, one knows that the other part is in the op-
posite state, even though one has not carried out
a measurement on this part.

In the general case, the entanglement of a state
|ψ〉 is often characterised by the concurrence

C = 2|αδ − βγ|, (20.18)

which fulfills 0 ≤ C ≤ 1. For separable states,
C = 0, i.e., the concurrences vanishes. For en-
tangled states, C > 0. States with C = 1 are called



50

maximally entangled. Examples of maximally en-
tangled states are the four Bell states

|β00〉 =

√
1

2
(|00〉+ |11〉), (20.19)

|β01〉 =

√
1

2
(|01〉+ |10〉), (20.20)

|β10〉 =

√
1

2
(|00〉 − |11〉), (20.21)

|β11〉 =

√
1

2
(|01〉 − |10〉). (20.22)

For the pure state given above, the full density
matrix

ρ =


α
β
γ
δ

 (α∗, β∗, γ∗, δ∗) =

(
A B
C D

)
(20.23)

can be conveniently written in block form, where
A, B, C, and D are 2×2-dimensional matrices. The
reduced density matrix

ρ1 =

(
trA trB
trC trD

)
(20.24)

can then be obtained by taking traces of the
blocks, which here results in

ρ1 =

(
|α|2 + |β|2 αγ∗ + βδ∗

γα∗ + δβ∗ |γ|2 + |δ|2
)
. (20.25)

Similarly,

ρ2 = A+D =

(
|α|2 + |γ|2 αβ∗ + γδ∗

βα∗ + δγ∗ |β|2 + |δ|2
)
. (20.26)

The purity of these reduced density matrices is re-
lated to the concurrence,

tr ρ̂2
1 = tr ρ̂2

2 = 1− C2/2. (20.27)

Furthermore, we have the identity det ρ̂1 = C2/4.
For composite systems in a pure state, the

reduced density matrix also delivers the en-
tanglement of formation E = −tr (ρ̂1 log2 ρ̂1) =
−tr (ρ̂2 log2 ρ̂2).

In their form discussed above, these measures of
entanglement only apply to pure states of a com-
posite system. Entanglement measures for multi-
component systems with a mixed density matrix
are an active field of research. Well understood
is only the case of two composite two-level sys-
tems, for which entanglement measures can be
computed efficiently from the 4 × 4 dimensional
density matrix ρ of the composite system in the
standard basis. In order to obtain the concur-
rence, one needs to compute the four eigenvalues

λi of the matrix ρ(Y1Y2)ρ∗(Y1Y2), where Y1 and Y2

are the Y Pauli matrix acting on subsystem 1 and
2, respectively. When the eigenvalues are ordered
such that λ1 > λ2 > λ3 > λ4, the concurrence is
given as C = max (0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4). The

entanglement of formation E = mindec

∑
i PiE(ψi) is

generalised by minimizing the averaged pure-state
entanglement of formation over all possible decom-
positions ρ̂ =

∑
i Pi|ψi〉〈ψi| of the density matrix

(where the states |ψi〉 do not need to be orthogonal).
Remarkably, both entanglement measures are re-
lated by the general formula E = h( 1

2 + 1
2

√
1− C2),

where h(x) = −x log2 x− (1− x) log2(1− x).

3. Einstein, Podolsky, and Rosen

Here are some interesting thoughts about Bell
pairs, raised by Einstein, Podolsky, and Rosen at
a time (1935) when quantum mechanics was not
yet totally accepted: When one measures a part of
a system in a Bell pair, one gets a random result 0
or 1 with probability 1/2. However, when one deter-
mined the state of part one of the system and com-
municated the result to the location of part 2, one
would be able to predict the outcome of the mea-
surement of the second part with certainty. This
influence of the one experiment on the other was
termed the ’ghostly action at a distance’.

Maybe the randomness of quantum mechanics
is always of this kind, namely encoded in other de-
grees of freedom (so-called hidden variables) and
all randomness would disappear when one would
account for the state of these hidden variables? In
1965, John Bell showed that quantum mechan-
ics predicts correlations between the two two-state
systems which cannot be explained by a local hid-
den variable theory (we discuss the details of these
considerations below). In the early 1980’s, the ex-
istence of these correlations have been tested and
confirmed by Alain Aspect and co-workers for the
polarisation states of entangled photons.

These experiments are considered to be a proof
of Bell’s theorem: No physical theory of local hidden
variables can ever reproduce all of the predictions
of quantum mechanics. Hence, the uncertainties
and randomness in the outcome of experiments
in quantum mechanics are fundamentally differ-
ent than mere statistical uncertainties in classical
theories (e.g., in classical thermodynamics the sta-
tistical uncertainties arise from the uncontrolled
microsocopic motion of the particles, which may
still be deterministic, i.e., based on Newton’s laws
of motion).



51

4. Bell inequalities

Entanglement is physically significant because
it results in correlations that cannot be described
by classical probabilities. These correlations can
be uncovered by statistical tests, known as Bell in-
equalities. The most transparent inequality is the
CHSH inequality due to Clauser, Horn, Shimony,
and Holt. Consider the composition of two two-
state systems; to be explicit, think of the spins
of two electrons with basis states |0〉 = | ↑〉 and
|1〉 = |↓〉. On each spin we carry out two different
experiments, described by observables Â1, Â′1, B̂2,
and B̂′2, which measure whether the spin points
into a particular direction. To the outcome of each
experiment we designate the value 1 or −1, depend-
ing on whether the spin is found to be aligned par-
allel or antiparallel to the measurement direction,
respectively. Now consider the expectation value
of

F̂ = (Â1 + Â′1)B̂2 − (Â1 − Â′1)B̂′2. (20.28)

Classically, for each combination of outcomes,
F is either 2 or −2, and therefore on average
〈F 〉 ≤ 2, which is the CHSH inequality. Quantum-
mechanically, the average is obtained by an ex-
pectation value. Let us choose Â1 = Z, Â′1 = X,
B̂2 = −

√
1/2(X+Z), and B̂′2 =

√
1/2(X−Z), so that

F̂ = −
√

2(X1X2+Z1Z2), which is represented by the
matrix

F = −
√

2


1 0 0 1
0 −1 1 0
0 1 −1 0
1 0 0 1

 . (20.29)

Furthermore, assume that the system is in the Bell
state |β11〉 =

√
1/2(|↑↓〉 − |↓↑〉), represented by the

vector

ψ =
√

1/2


0
1
−1
0

 . (20.30)

We then find 〈F̂ 〉 = ψ†Fψ = 2
√

2, which violates
the CHSH inequality. The reason are quantum-
mechanical correlations that arise as a conse-
quence of the entanglement of the Bell state.
Quantum computation taps into this resource to
achieve tasks that are classically impossible.

XXI. MANY PARTICLES

Quantum mechanics takes one more twist when
we consider a system containing many indistin-
guishable particles. By this we many particles

that share the same physical characteristics like
mass, charge, overall spin, etc; examples are col-
lections of many electrons, or even collections of
many identical atoms (which themselves are com-
posite systems).

Assume, therefore, that there are several quan-
tum particles, labelled 1, 2, 3, . . ., which can be
found at positions r1, r2, r3, . . .. Some of the parti-
cles may also have spin s1, s2, s3, . . .. The spin can
take values si = m~ where m = −Si,−Si + 1, . . . , Si.
Particles are called bosons when Si is an integer
(an example is the photon, with S = 1). Particles
are called fermions when Si is a halfinteger (i.e.,
an integer plus 1/2). Examples are electrons and
protons, which have S = 1/2.

A. Distinguishable particles

For a collection of distinguishable particles, we
can follow the description of systems with many
degrees of freedom. The total wavefunction is given
by ψ(r1, s1, r2, s2, r3, s3, . . .). An example is the wave
function ψ(rp, sp, re, se) describing the proton and
the electron in a hydrogen atom.

B. Indistinguishable particles

For indistinguishable particles, the total wave-
function is still a function ψ(r1, s1, r2, s2, r3, s3, . . .),
but probabilities cannot depend on the order of the
labels:

|ψ(r1, s1, r2, s2, r3, s3 . . .)|2 = |ψ(r2, s2, r1, s1, r3, s3, . . .)|2,
(21.1)

and similarly for the interchange of the other la-
bels. This leaves two options. The first option is

ψ(r1, s1, r2, s2, r3, s3 . . .) = ψ(r2, s2, r1, s1, r3, s3, . . .),
(21.2)

etc: The wavefunction is symmetric. This case is
found when the particles are bosons. The second
option is

ψ(r1, s1, r2, s2, r3, s3 . . .) = −ψ(r2, s2, r1, s1, r3, s3, . . .),
(21.3)

etc: The wavefunction is antisymmetric. This case
is found when the particles are fermions.

C. Pauli exclusion principle

In the case of fermions, Eq. (21.3) implies that
the probability to find two particles at the same
point in space is zero if their spin state is the same:

ψ(r1, s1, r1, s1, r3, s3 . . .) = −ψ(r1, s1, r1, s1, r3, s3, . . .),
(21.4)
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hence

ψ(r1, s1, r1, s1, r3, s3 . . .) = 0. (21.5)

This is called the Pauli exclusion principle, which
has numerous important consequence ranging
from the allowed configurations of occupied or-
bitals by electrons in an atom and the periodic
table of elements (both discussed below) over the
general structure of matter to the properties of
neutron stars.

D. Two-electron orbitals

The wavefunction of two electrons can be
grouped into a vector

ψ =


ψ(r1, ↑, r2, ↑)
ψ(r1, ↓, r2, ↑)
ψ(r1, ↑, r2, ↓)
ψ(r1, ↓, r2, ↓)

 . (21.6)

Typical two-electron wavefunctions which satisfy
Eq. (21.3) are of the form

[ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)]


1
0
0
0

 , (21.7)

[ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)]


0

1/
√

2

1/
√

2
0

 , (21.8)

and

[ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)]


0
0
0
1

 . (21.9)

In all these cases the orbital part is antisymmetric
and the spin part is symmetric. These states are
called triplet states and correspond to a total spin
of ~ (i.e. the spin of the two electrons is parallel
and adds up). There is only a single state where
the spin is anti-parallel:

[ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1)]


0

1/
√

2

−1/
√

2
0

 . (21.10)

This state corresponds to a total spin of 0 and has
a symmetric orbital part.

When the orbital wavefunctions are identical,
ψ1 = ψ2, then the triplet states vanish. This is a
consequence of the Pauli exclusion principle: Two
electrons cannot have the same orbital wavefunc-
tion if their spin is parallel.

E. Two electrons in a harmonic-oscillator potential

Recall that the single-particle states in a
harmonic-oscillator potential are enumerated by
a quantum number |n〉, n = 0, 1, . . . ,, and associ-
ated with an energy En = ~ω(n + 1/2). If we load
electrons into such a harmonic trap we also have
account for the spin degree of freedom, thus re-
sulting in states |n, ↑〉 and |n, ↓〉 whose energies are
degenerate, En,↑ = En,↓ = En.

For two electrons, we now have to distinguish
several situations:

If the spins are identical, e.g., pointing up, we
then have to work in the basis of states |n ↑;m ↑
〉. The spin part of this is symmetric, and thus
the antisymmetry required by the Pauli principle
must arise from the orbital part, giving rise to a
structure

|n ↑;m ↑〉 − |m ↑;n ↑〉 = (|nm〉 − |mn〉) |↑↑〉, (21.11)

where we formally separated the orbital and spin
parts of the state. In terms of wave functions,
the orbital part is of the structure ψn(x1)ψm(x2) −
ψm(x1)ψn(x2), where xi are the coordinates of the
two electrons. This state vanishes if n = m. In
particular, the lowest-energy state of the system is
(|01〉−|10〉) |↑↑〉; this has energy E01 = E0+E1 = 2~ω.

If the spins are non-identical, we have to work
in the basis of states |n ↑;m ↓〉 and |n ↓;m ↑〉. The
spin part may still be symmetric, which is realised
by states of the form

|n ↑;m ↓〉+ |n ↓;m ↑〉 − |m ↑;n ↓〉 − |m ↓;n ↑〉
= (|nm〉 − |mn〉)(|↑↓〉+ |↓↑〉). (21.12)

Again, these states vanish for n = m. This ex-
hausts the triplet states, which are all constrained
by the Pauli principle. However, the spin part may
now also be antisymmetric, which is realised by
states of the form

|n ↑;m ↓〉 − |n ↓;m ↑〉+ |m ↑;n ↓〉 − |m ↓;n ↑〉
= (|nm〉+ |mn〉)(|↑↓〉− |↓↑〉). (21.13)

These are singlet states, for which n and m may
be equal. This includes the lowest-energy state
|00〉(|↑↓〉− |↓↑〉), which possesses energy E00 =
2E0 = ~ω.

F. The periodic table of chemical elements

The periodic table of elements is composed of
atoms with a nucleus of charge Ze, which attracts
Z electrons. A qualitative understanding can be
obtained by ignoring the interaction between the
electrons. Then the electronic states are given by
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the states ψnml = RnYlm of the hydrogen atom, but
with the charge e of the nucleus replaced by Ze.
The ground state of an atom is obtained by occu-
pying these states starting with the lowest energy
state 1s, then 2s and 2p, then 3s, 3p. (After this
point interactions start to change the systematics
slightly: The 4s orbital is filled before 3d.) Because
of the Pauli principle, each state can accommodate
only two electrons, which have to have opposite
spin.

Examples: Helium (He) has Z = 2 (the nucleus
consists of two protons and two neutrons). Hence,
it has two electrons, which occupy the 1s orbital
with opposite spin. The electronic charge density
is spherical symmetric, and exciting an electron
into the 2s or 2p orbital would cost a relatively
large amount of energy. This explains why He is
chemically inert.

Neon (Ne) has Z = 10, hence all states in 1s, 2s
and 2p are occupied. Again, the charge distribu-
tion is spherical symmetric and the excitation en-
ergy to the 3s, 3p and 3d orbitals prevents this
atom from being chemically active. Atoms of sim-
ilar properties as He or Ne (noble gases) are all
found in the last column of the periodic table.

Sodium (Na) has Z = 11. Ten electrons occupy
the 1s, 2s, and 2p orbitals, like in Ne, and the ex-
tra eleventh electron occupies the 3s orbital. Its
chemical properties are typical for the alkali met-
als, which are all found in the first column of the
periodic table, and all have the electronic struc-
ture of a noble gas plus one extra electron in an s
orbital. Alkali atoms like to bind to halogens, the
atoms in the last-but-one column, which lack one
electron for a spherically symmetric electronic con-
figuration. When an alkali atom binds to a halo-
gen atom, the alkali atom donates and electron
to the halogen atom, which is energetically favor-
able; both atoms then are spherically symmetric
and oppositely charged, and attract each other by
the Coulomb force.

G. Quantum statistical mechanics

We finally turn to a brief discussion of the conse-
quences of quantum mechanics for statistical me-
chanics, which concerns the thermodynamical de-
scription of large composite systems in (or close)
to equilibrium. This topic brings us right back to
the historical origin of quantum mechanics: Max
Planck’s hypothesis that the energy of systems can
be quantised. That we can discuss these conse-
quences solidly only at the end of this course is
testament to the depth of this original concept (and
well justifies the appellation quantum mechanics

for the theory that emerged from it).
Thermodynamics enjoys a firm theoretical foun-

dation relying on statistical considerations of the
occupation probability of all possible microstates,
as pioneered by Ludwig Boltzmann, who intro-
duced statistical weights which relate the occupa-
tion probability to energy and temperature. Quan-
tum mechanics fundamentally affects and shapes
all aspects of this description via the concepts of
energy quantisation, rules to calculate occupation
probabilities, and the Pauli principle which implies
restrictions for the states of indistinguishable par-
ticles, of which there are two variants, bosons and
fermions.

1. Boltzmann distribution

The Boltzmann distribution assigns the value

Pn =
1

Z(T )
gn exp(−En/kT ) (21.14)

to the probability that a thermodynamical system
occupies a microstate of energy En and degeneracy
gn, where k is Boltzmann’s constant, T is temper-
ature, and

Z(T ) =
∑
n

gn exp(−En/kT ) (21.15)

is the partition function which ensures normalisa-
tion of the occupation probabilities.

Quantum mechanically, this corresponds to a
density matrix

ρ̂ =
1

Z(T )
exp(−Ĥ/kT ), (21.16)

where now normalisation enforces Z(T ) = tr ρ̂.

2. Fermi-Dirac statistics

Consider a thermodynamical systems which is
made out of identical components. Starting from
the Boltzmann distribution of the combined sys-
tem we can derive probability distributions for
states individual components.

The simplest case concerns fermions, since here
each single-particle state |i〉 can be occupied at
most with probability one. In a measurement, this
corresponds to only two choices: The state is oc-
cupied or empty. Based on the Boltzmann distri-
bution for the microstates of the total system, the
average number of fermions occupying this then
follows the Fermi-Dirac distribution

n̄i =
1

exp[(εi − µ)/kT ] + 1
, (21.17)
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where µ is the chemical potential, which is inde-
pendent of the index i and can be determined by
knowledge of the total number N =

∑
i n̄i of parti-

cles in the system.
At low temperatures, the Fermi-Dirac distribu-

tion behaves like a unit step function, n̄i ≈ Θ(EF −
εi), where EF is the Fermi energy. In many appli-
cations, the Fermi energy is very large. An impor-
tant example are electrons in metals, which typi-
cally have a Fermi energy EF is many thousands
of kelvins). Electrons in a metal can be treated as
weakly interacting, and therefore are a good ap-
proximation of a (Fermi gas). For EF � T (i.e., at
room temperature and below), the gas is called de-
generate.

Further examples of degenerate Fermi gases are
neutron stars (a degenerate gas of neutrons) and
white dwarf stars (a degenerate gas of electrons).
A degenerate gas is difficult to compress since
the density of states decreases with volume, upon
which the Pauli principle enforces occupation of
highly energetic levels. This corresponds to a large
degeneracy pressure which stabilizes white dwarfs
and neutron stars against gravitational collapse as
long as they are not too heavy. (White dwarfs are
stable below the Chandrasekhar limit of about 1.4
solar masses; exceeding this limit they may ex-
plode in a Type Ia supernova. Neutron stars are
formed as remnants of Type II, Type Ib or Type Ic
supernovae, involving more massive stars. Above
3-4 solar masses, the degeneracy pressure of the
neutrons is overcome by gravity, which may lead
to the formation of a black hole.)

3. Bose-Einstein statistics

Bosons are not subject to the Pauli exclusion
principle, so that each single-particle state can be
occupied an arbitrary number of times. The Boltz-
mann distribution for the microstates of the total
system then yields the Bose-Einstein distribution

n̄i =
1

exp[(εi − µ)/kT ]− 1
, (21.18)

which differs from the Fermi-Dirac distribution
only by a − sign in the denominator.

At low temperatures, the chemical potential of a
weakly interacting Bose gas tends to zero. Below
a critical temperature, the ground state becomes
populated by finite fraction of the total number
of boson, and the gas forms a Bose-Einstein con-
densate, as first realised in 1995 by Eric Cornell,
Carl Wieman, and co-workers with atomic gases
at sub-micro Kelvin temperatures. Analogously,

more strongly interacting bosons may form a su-
perfluid with zero viscosity, as first observed for
Helium-4 (by Pyotr Kapitsa, John Allen and Don
Misener, in 1938). Under some circumstances,
strongly bound pairs of fermions can effectively
behave like bosons. These can condense to form
fermionic superfluids, like a superfluid of elec-
tronic Cooper pairs in a superconductor (as pro-
posed by John Bardeen, Leon Cooper and Robert
Schrieffer in 1957; superconductivity was discov-
ered by Heike Kamerlingh Onnes in 1911), or a
superfluid of Helium 3 (as confirmed by Douglas
D. Osheroff, in 1971).

4. Maxwell-Boltzmann statistics

At large temperatures and low densities, the
Fermi-Dirac distribution and the Bose-Einstein
distribution tend to the same limit, the Maxwell-
Boltzmann distribution

n̄i = exp[−(εi − µ)/kT ]. (21.19)

For a gas, this approximation is valid if its particle
concentration c is much smaller than the quantum
concentration cQ = (mkT/2π~2)3/2. This defines the
limit of a non-degenerate gas.

5. Planck’s law of black body radiation

As an application we consider the problem of
electromagnetic radiation intensity emitted by a
black body, an object that perfectly absorbs all in-
cident electromagnetic radiation. Classical treat-
ment of this radiation leads to two contradictory
predictions, Wien’s law (which is only accurate
at high frequencies), and the Rayleigh-Jeans law
(which is only accurate at low frequencies). This
impasse led Planck to formulate his quantisation
hypothesis. The problem is then solved by com-
bining the density of electromagnetic field states

ρ(ω) = L3 ω2

π2c3
(21.20)

per unit angular frequency interval with the occu-
pation probability

n̄(ω) =
1

exp[~ω/kT ]− 1
(21.21)

of photons with energy ~ω. This delivers an energy
density

u(ω, T ) =
1

L3
~ωρ(ω)n̄(ω) =

~ω3

π2c3
1

exp[~ω/kT ]− 1
.

(21.22)
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The direction-resolved spectral intensity per unit
solid angle is given by

I(ω, T ) =
cu(ω)

4π
=

~ω3

4π3c2
1

exp[~ω/kT ]− 1
. (21.23)

In terms of the ordinary frequency ν = ω/2π, this
delivers Planck’s law

I(ν, T ) = 2πI(ω = 2πν, T ) =
2hν3

c2
1

exp[hν/kT ]− 1
,

(21.24)

where we introduced (for good measure) Planck’s
original constant h = 2π~ = 6.62606896(33)×10−34J s.


